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FOREWORD
This American National Standard Recom-
mended Practice for Software Reliability has
been sponsored by the American Institute of
Aeronautics and Astronautics (AIAA) as part
of its standards program. It originated within
the Space-Based Observation Systems Com-
mittee on Standards (SBOS/CoS) and was
developed by the Software Reliability Work-
ing Group. Members of the working group
served voluntarily and without compensa-
tion; they are not necessarily members of
AIAA. This document represents a consen-
sus of opinions on software reliability mea-
surement from individuals inside and outside
AlAA who have expressed an interest in par-
ticipating in the development of the rec-
ommended practice.

Software reliability engineering (SRE) is an
emerging discipline. This recommended
practice describes an approach to estimating
and predicting the reliability of software and
is intended to provide a foundation on which
practitioners and researchers can build
consistent methods. It is intended to meet
the needs of software practitioners and users
who are confronted with varying terminology
for reliability measurement and a plethora of
models and data collection methods. This
recommended practice contains information
necessary for the application of software
reliability measurement to a project. It
includes guidance on the following:

l Common terminology
l Software reliability estimation procedure
l Model selection
l Data collection procedure for use with the

AlAA software reliability database
l Open research questions
l Predicting system failure rates.

This recommended practice was developed
to meet the needs of software reliability
practitioners and researchers. Practitioners
are considered to be the following:

l Managers
l Technical managers and acquisition

specialists
l Software engineers
l Quality and reliability engineers.

i v
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Sections l-4 should be read by all recom-
mended practice users. Section 5 and Ap-
pendices E and F provide the basis for
establishing the process and the potential
uses of the process. Section 7 provides the
foundation for establishing a software relia-
bility data collection program, as well as
what information needs to be collected to
support the recommended models described
in Section 6 and Appendix A. Appendix B
identifies tools that support the reliability
database, the recommended models and the
analysis techniques described in Section 5
and Appendices E and F . Finally, to
improve the state of the art in software
reliability engineering continuously, Ap-
pendix D describes research opportunities for
consideration. Recommended Practice users
typically review Chapters l-4 and begin
applying the techniques described in Sections
$6 and 7, concluding with the appendix on
reliability tools.

The AIAA Standards Procedures provide that
all approved Standards, Recommended Prac-
tices, and Guides are advisory only. Their
use by anyone engaged in industry or trade is
entirely voluntary. There is no agreement to
adhere to any AIAA standards publication
and no commitment to conform to or be
guided by any standards report. In
formulating, revising, and approving stan-
dards publications, the Committees on Stan-
dards will not consider patents which may
apply to the subject matter. Prospective
users of the publications are responsible for
protecting themselves against liability for in-
fringement of patents, or copyrights, or both.

The viewpoints expressed in this recom-
mended practice are subject to change, de-
pending on developments in the state of the
art and comments received from users of the
recommended practice. Comments are
welcome from any interested party,
regardless of membership affiliation with
AIAA. Comments should be directed to:

AIAA Headquarters
Standards Department
370 LEnfaut  Promenade, SW
Washington, DC 20024-25 18
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1.0 INTRODUCTION

1.1 Scope

Software Reliability Engineering (SRE) is an
emerging discipline. SRE is the application
of statistical techniques to data collected
during system development and operation to
specify, predict, estimate, and assess the
reliability of software-based systems. This
recommended practice defines a practical
methodology for software reliability
engineering.

The Recommended Practice for Software
Reliability provides a foundation for
practitioners and researchers. It supports the
need of software practitioners who are
confronted with inconsistent methods and
varying terminology for reliability estimation
and prediction, as well as a plethora of
models and data collection methods. It
supports researchers by defining common
terms, by identifying criteria for model
comparison, and by identifying open research
problems in the field

This document provides guidance on the
following:

l Common terminology

l Software reliability estimation and
proCedUre

l Model selection

l Data collection procedure for use with the
AIAA software reliability database

This recommended practice is applicable to
in-house, commercial, and third-party soft-

ANSWUAA  R-013-1992

ware projects. It has been developed to
support a systems reliability approach. As
illustrated in Figure 1, the AIAA Software
Reliability Engineering Recommended
Practice considers hardware and ultimately
systems characteristics.

1.2 Purpose

The AIAA Recommended Practice for
Software Reliability is intended to be used
from the start of the integration test phase
through the operational use phase of the
software life cycle. It also provides input to
the planning process for reliability manage-
ment. It is assumed that the use of this
handbook has been preceded by an identifica-
tion and analysis of user requirements.

The Recommended Practice describes activ-
ities and qualities of a software reliability esti-
mation and prediction program. It describes
a framework that permits assessment of risk
and prediction of failure rates, recommends a
set of models for software reliability
estimation and prediction, and specifies
mandatory as well as recommended data
collection requirements.

1.3 Intended Audience and Benefits

The Recommended Practice is intended for
use by both practitioners (e.g., software de-
velopers, software acquisition personnel,
technical managers, and quality and reliability
personnel) and researchers. Its purpose is to
provide both practitioners and researchers
with a common baseline for discussion and to
define a procedure for assessing the reliability
of software, It is assumed that users of this

System Reliability

r

Hardware Reliability

Figure 1 System Reliability Characteristics

1

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:28:13

Information Handling Services, 1999



AIAA R-Ol13  92 W Ob95534 OOOOb3b 879 -

ANSI/ALUi  R-013-1992

recommended practice have a basic under-
standing of the software life cycle and an un-

technique. Data acquisition procedures and

derstanding of statistical concepts.
model selection criteria are provided and
discussed in order to assist in these efforts.

This recommended practice is intended to be
used in support of designing, developing and
testing software. This includes software
quality and software reliability activities. It
also serves as a reference for research on the
subject of software reliability.

1.5 Relationship to Hardware
Reliability

1.4 Applications of Software
Reliability Engineering

The techniques and methodologies presented
in this handbook have been successfully ap-
plied to software projects by industry practi-
tioners in order to do the following:

The creation of software and hardware prod-
ucts are alike in many ways. and can be simi-
larly managed throughout design and devel-
opment. While the management techniques
may be similar, there are genuine differences
between hardware and software [LIpO86,
KLINSO]  . For example:

l Determine whether a specific software
process is likely to produce code which
satisfies a given software reliability
requirement,

l Changes to hardware require a series of im-
portant and time-consuming steps: capital
equipment acquisition, component procure-
ment, fabrication, assembly, inspection,
test and documentation. Changing soft-
ware is frequently more feasible (although
effects of the changes are not always clear)
and oftentimes requires only testing and
documentation.

l Determine the size of a software
maintenance effort by predicting the failure
rate during the operational phase,

l Software has no physical existence. It in-
cludes data as well as logic. Any item in a
file can be a source of failure.

l Provide a metric for process improvement
evaluation,

l Assist software safety certification,

l Determine when to release a software sys-
tem, or to stop testing it,

l Software does not wear out. Furthermore,
failures attributable to software faults come
without advance warning and often provide
no indication they have occurred. Hard-
ware, on the other hand, often provides a
period of graceful degradation.

l Estimate the occurrence of the next failure
for a software system,

l Identify elements in a software system
which are leading candidates for re-design
to improve reliability,

l Software may be more complex than hard-
ware, although exact software copies can
be produced, whereas manufacturing
limitations affect hardware.

l Measure reliability of a software system in
operation, using this information to control
change to the system.

l Repair generally restores hardware to its
previous state. Correction of a software
fault always changes the software to a new
state.

It is the intent of this recommended practice
to enable other software practitioners to make
similar determinations for their particular
software systems, as needed. Special
attention should be given in the application of
these practices to avoid violation of the
assumptions inherent in each modeling

l Redundancy and fault tolerance for
hardware are common practice. These
concepts are only beginning to be practiced
in software.

l Software developments have traditionally
made little use of existing components.
Hardware is manufactured with standard

2
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parts.

l Hardware reliability is expressed in wall
clock time. Software reliability is ex-
pressed in execution time.

l A high rate of software change can be detri-
mental to software reliability.

Despite the above differences, hardware and
software reliability must be managed as an
integrated system attribute. However, these
differences must be acknowledged and ac-
commodated by the techniques applied to
each of these two types of subsystems in reli-
ability analyses.

2.0 TERMINOLOGY

This chapter defines terms that are commonly
used throughout the recommended practice.
The bases for most definitions are from the
ANSI / IEEE Standard Glossary of Software
Engineering Terminology, STD-729-1991.

Calendar time - Chronological time, in-
cluding time during which a computer may
not be running.

Clock time - Elapsed wall clock time from
the start of program execution to the end of
program execution.

Error - (1) A discrepancy between a com-
puted, observed or measured value or condi-
tion and the true, specified or theoretically
correct value or condition. (2) Human action
that results in software containing a fault.
Examples include omission or misinterpreta-
tion of user requirements in a software speci-
fication, and incorrect translation or omission
of a requirement in the design specification.
This is not a preferred usage.

Execution time - (1) The amount of actual
or central processor time used in executing a
program. (2) The period of time during
which a program is executing.

Failure - (1) The inability of a system or
system component to perform a required
function within specified limits. A failure
may be produced when a fault is encountered
and a loss of the expected service to the user

ANSI/AUA  R-013-1992

results. (2) The termination of the ability of a
functional unit to perform its required func-
tion. (3) A departure of program operation
from program requirements.

Failure rate - (1) The ratio of the number of
failures of a given category or severity to a
given period of time; for example, failures
per second of execution time, failures per
month. Synonymous with failure intensity.
(2) The ratio of the number of failures to a
given unit of measure; for example, failures
per unit of time, failures per number of trans-
actions, failures per number of computer
runs.

Failure Severity - A rating system for the
impact of every recognized credible software
failure mode. For example,

l Severity #l - Loss of life or system

l Severity #2  - Affects ability to complete
mission objectives

l Severity #3  - Workaround available, there-
fore minimal effects on procedures (mis-
sion objectives met)

l Severity #4  - Insignificant violation of re-
quirements or standards, not visible to user
in operational use

l Severity #5  - Cosmetic issue which should
be addressed or tracked for future action,
but not necessarily a present problem.

Fault - (1) A defect in the code that can be
the cause of one or more failures. (2) An ac-
cidental condition that causes a functional unit
to fail to perform its required function.
Synonymous with bug.

Fault Tolerance - The survival attribute of
a system that allows it to deliver the required
service after faults have manifested them-
selves within the system.

Firmware - (1) Computer programs and
data loaded in a class of memory that cannot
be dynamically modified by the computer
during processing. (2) Hardware that con-
tains a computer program and data that cannot
be changed in its user environment. The

3
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computer programs and data contained in
fmnware  are classified as software; the circuit
containing the computer program and data is
classified as hardware. (3) Program instruc-
tions stored in a read-only storage. (4) An
assembly composed of a hardware unit and a
computer program integrated to form a func-
tional entity whose configuration cannot be
altered during normal operation. The com-
puter program is stored in the hardware unit
as an integrated circuit with a fixed logic
configuration that will satisfy a specific appli-
cation or operational requirement.

Integration - The process of combining
software elements, hardware elements or
both into an overall system

Maximum Likelihood Estimation - A
form of parameter estimation in which se-
lected parameters maximize the probability
that observed data could have occurred.

Module - (1) A program unit that is discrete
and identifiable with respect to compiling,
combining with other units and loading; for
example, input to or output from an assem-
bler, compiler, linkage editor or executive
routine. (2) A logically separable part of a
program.

Operational - Pertaining to the status given
a software product once it has entered the op-
eration and maintenance phase.

Parameter - A variable or arbitrary constant
appearing in a mathematical expression, each
value of which restricts or determines the
specific form of the expression.

Quality - The totality of features and charac-
teristics of a product or service that bears on
its ability to satisfy given needs.

Subsystem - A group of assemblies, com-
ponents or both combined to perform a single
function.

Software Quality - (1) The totality of fea-
tures and characteristics of a software product
that bear on its ability to satisfy given needs;
for example, to conform to specifications.
(2) The degree to which software possesses a
desired combination of attributes. (3) The

4

degree to which a customer or user perceives
that software meets his or her composite ex-
pectations. (4) The composite characteristics
of software that determine the degree to
which the software in use will meet the ex-
pectations of the customer.

Software Reliability - (1) The probability
that software will not cause the failure of a
system for a specified time under specified
conditions. The probability is a function of
the inputs to and use of the system, as well as
a function of the existence of faults in the
software. The inputs to the system determine
whether existing faults, if any, are encoun-
tered. (2) The ability of a program to per-
form a required function under stated condi-
tions for a stated period of time.

Software Reliability Engineering - the
application of statistical techniques to data
collected during system development and
operation to specify, predict, estimate, and
assess the reliability of software-based
systems.

Software Reliability Estimation - The
application of statistical techniques to ob-
served failure data collected during system
testing and operation to assess the reliability
of the software.

Software Reliability Model - A mathe-
matical expression that specifies the general
form of the software failure process as a
function of factors such as fault introduction,
fault removal and the operational environ-
ment.

Software Reliability Prediction - A
forecast of the reliability of the software
based on parameters associated with the
.software  product and its development
environment.

System - (1) A collection of people, ma-
chines and methods organized to accomplish
a set of specific functions. (2) An integrated
whole that is composed of diverse, interact-
ing, specialized structures and subfunctions.
(3) A group or subsystem united by some
interaction or interdependence, performing
many duties but functioning as a single unit.

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:28:13

Information Handling Services, 1999



AIAA R-al13  92 - Ob95534 0000637 ST8 -

3.0 REFERENCE
DOCUMENTS

This section contains reference documents
that are applicable to the field of software re-
liability engineering.

3.1 Primary Documents

The following list of standards should be re-
viewed prior to implementation of this hand-
book:

l ANSI / IEEE Std 729-1991, “IEEE
Standard Glossary of Software Engineering
Terminology”

l MIL-Std 756, “Reliability Modeling and
Prediction”

3.2 Other Documents

The following list of documents provide ad-
ditional information applicable to the scope of
the handbook.

l IEEE Std 982.1-1988, “IEEE Standard
Dictionary  of Measures to Produce Reliable
Software”

l IEEE Std 982.2-1988, “IEEE Guide for the
Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software”

l IEEE Std 1061-1992, “IEEE Standard for a
Software Quality Metrics Methodology”

l MIL-Std-785, “Reliability Programs for
Systems and Equipment”

l IEEE Std 1074, “Standard for Life-cycle
Processes”

l MIL-HDBK 217, “Reliability Prediction of
Electronic Equipment”

ANSI/AMA  R-013-1992

4.0 SOFTWARE
RELIABILITY MODELING -
OVERVIEW, CONCEPTS, AND
ADVANTAGES

Software is a complex intellectual product.
Inevitably, some errors are made during re-
quirements formulation as well as during de-
signing, coding and testing the product. The
development process for high-quality soft-
ware includes measures that are intended to
discover and correct faults resulting from
these errors, including reviews, audits,
screening by language-dependent tools and
several levels of test. Managing these errors
involves describing, classifying and mod-
eling the effects of the remaining faults in the
delivered product and thereby helping to
reduce their number and criticality.

Dealing with faults costs money. It also im-
pacts development schedules and system per-
formance (through increased use of computer
resources such as memory, CPU time and
peripherals requirements). As is usually rec-
ognized, there can be too much as well as too
little effort spent dealing with faults. Thus
the system engineer (along with management)
can use reliability estimation and prediction to
understand the current status of the system
and make tradeoff decisions.

This section describes the basic concepts in-
volved in software reliability engineering and
addresses the advantages and limitations of
software reliability prediction and estimation.

4.1 Basic Concepts

There are at least two significant differences
between hardware reliability and software re-
liability. First, software does not fatigue,
wear out or burn out. Second, due to the
accessibility of software instructions within
computer memories, any line of code can
contain a fault that, upon execution, is
capable of producing a failure.

A software reliability model specifies the
general form of the dependence of the failure
process on the principal factors that affect it:
fault introduction, fault removal and the
operational environment.

5
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Failure Rate

Time

Figure 2 Software Reliability Measurement Curve

The failure rate (failures per unit time) of a
software system is generally decreasing due

Both prediction and estimation models need

to fault identification and removal. At a par-
good data if they are to yield good forecasts.

ticular time, it is possible to observe a history
Good data implies accuracy (that data is truth-
fully recorded at the time the events occurred)

of the failure rate of the software. Software
reliability modeling is done to estimate the

and pertinence (that data relates to an environ-

form of the curve of the failure rate by statis-
ment that is equivalent to the environment for

tically estimating the parameters associated
which the forecast is to be valid). A negative

with the selected model. The purpose of this
example with respect to accuracy is the re-
stricting of failure report counts to those

measure is two-fold: (1) to estimate the extra
execution time required to meet a specified

which are completely filled out. This is neg-

reliability objective and (2) to identify the ex-
ative because they may represent a biased

pected reliability of the software when the
sample of the total reports. A negative ex-

product is released. This procedure is impor-
ample with respect to pertinence would be the
use of data from early test runs at an uncon-

tant for cost estimation, resource planning, trolled workload to forecast the results of a
schedule validation and quality prediction for
software maintenance management.

later test executed under a highly controlled
workload.

4.2 Limitations of Software
Reliability Prediction and Estimation

4’.2.1 Prediction Model Advantages /
Limitations

There are two types of models that can be
applied for software reliability measurement.
First, there are prediction models which make
use of parameters associated with the soft-
ware product and its development environ-
ment to predict the reliability of a software
product. Second, there are estimation models
which apply statistical techniques to the ob-
served failures during software testing and
operation to forecast the product’s reliability.
This section describes the limitations of each
type of model.

6

In prediction models, the failure probability
of a program in development is forecast by
comparing it to the known failure probability
(or other reliability parameters) of an existing
program. The existing program is known as
a proof program. The advantage of this
procedure is that it can be performed at any
time during the development, whereas
reliability estimation depends on the
availability of operational or test data. The
validity of the prediction depends on (a) the
degree of similarity between the program
under development and the proof program
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(for which failure rates are known), and (b)
the quality of known failure rate data.

When there is direct equivalence between the
proof program and the program under devel-
opment, reliability prediction is a specific
application of the Similar Item Method as de-
fined in MIL-STD-756B. The criteria estab-
lished in MLSTD-756B  for application of
this method include:

l Design similarity

l Similarity of service use profile

l Procurement and project similarity

l Proof of reliability achievement.

Because all these criteria can be met only un-
der rare circumstances, alternative methods
are usually followed. The most applicable
alternative for software involves the follow-
ing steps:

(1) Estimate the size of the source code.
This is a routine step in software
development. Many organizations have
a size growth model that compensates
for the usual underestimating of program
size during early stages of development.

(2) Estimate the fault density (faults per line
of source code) at the start of formal test
(a test activity applicable to the program
as a whole and for which computer
usage hours will be collected). The
preferred approach is to use the fault
density determined for a similar program
created in the same environment. Where
this is not possible, a fault density
ranging from 0.001 (for programs
developed in a highly disciplined
environment and by programmers that
have extensive background in the
specific application) to 0.01 in a more
routine environment may be assumed
[MUSA87,  Table 5.21.

3) The product of (1) and (2),  gives the ex-
pected number of faults in the code at the
start of formal test. This number
corresponds to 00 in the Musa Basic

ANSI/AMA R-013-1992

Model [MUSA87,  Eq. 5.21  and to N in
the Jelinski-Moranda Model (Appendix
A).

In some environments, the relation between
the failure rate at a given point in the devel-
opment and the fault content at the start of test
may be known from experience. In that case,
the local factor should be used and the fol-
lowing steps can be omitted.

(4) The key considerations for most models
are: (a) the initial number of faults, (b)
the probability of executing a specific
fault during a single execution (the fault
exposure ratio), and (c) the time for
which the prediction is to be valid. The
latter consideration is at the user’s
discretion; in some models the time is
defined in terms of the number of faults
that have been found. The value of the
fault exposure ratio is 4.0 +-  2x10-7 for 8
out of 13 examples shown in  [MUSA87,
Table 5.61; the total range is 1.41 x 10m7
to 10.6x10-7. Where the fault exposure
ratio for similar programs is known, that
value should be used in preference to the
default values of the previous sentence.

(5) The failure probability per fault and unit
time is denoted by $ in the Jelinski-
Moranda Model and by fK  in the Musa
Basic Model. The factor f is the
frequency at which a given (object)
instruction will be accessed by the
program. It can be computed from f =
r/I, where r is the execution rate of the
computer and I is the number of object
instructions in the program. The
dimension of r is instructions per unit
time and the time units must be
consistent with those for which the
failure rate prediction is to be generated.
Since execution rate is normally
expressed per second and failure rates
are expressed per hour, an appropriate
conversion has to be performed.

(6) The initial failure rate can then be
predicted as ho = fKo0  for the Musa
Basic Model. With these parameters, the
expected failure rate at a future point in

7
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time (or after a given number of faults
have been detected) can be found by
using most of the models described in
Section 6 or Appendix A.

Other prediction models use data on the ap-
plication area, development and test environ-
ments, and characteristics of the code (e.g.,
complexity, modularity) [MCCA87].  These
are alternative ways of estimating the fault
density and / or the fault exposure ratio. To
date, none of these approaches has been
shown to be widely applicable. Their use
should be restricted to environments where
their validity has been demonstrated

4.2.2 Estimation Model Advantages /
Limitations

The premise of most estimation models is that
the failure rate is a direct function of the
number of faults in the program and that the
failure rate will be reduced (reliability will be
increased) as faults are detected and elimi-
nated during test or operations. This premise
is reasonable for the typical test environment
and it has been shown to give credible results
when correctly applied. However, the results
of estimation models will be adversely af-
fected by:

l Change in failure criteria

l Significant changes in the code under test

l Significant changes in the computing envi-
ronment.

All of these factors will require a new set of
reliability model parameters to be computed.
Until these can be established, the effective-
ness of the model will be impaired.
Estimation of new parameters depends on the
measurement of several execution time inter-
vals between failures.

Major changes can occur with respect to sev-
eral of the above factors when software be-
comes operational. In the operational envi-
ronment, the failure rate is a function of the
fault content of the program, of the variability
of input and computer states, and of software
maintenance policies. The latter two factors
are under management control and are fre-

8

quently utilized to achieve an expected or de-
sired range of values for the failure rate or the
downtime due to software causes. Examples
of management action that decrease the failure
rate include: avoidance of high work loads
and avoidance of data combinations that have
caused previous failures [GIFF84,IYER83].
Software in the operational environment may
not exhibit the reduction in failure rate with
execution time that is an implicit assumption
in most estimation models [HECH86a].
Knowledge of the management policies is
therefore essential for selection of a software
reliability estimation procedure for the
operational environment. Thus, the estima-
tion of operational reliability from data ob-
tained during test may not hold true during
operations.

Another limitation of software reliability es-
timation models is their use for verifying
ultra-high requirements. For example, if a
program executes successfully for x hours,
there is maybe a 0.5 probability that it will
survive the next x hours without failing
[LITT90].  Thus, to have the kind of u
confidence needed to verify a 10-g  require-
ment would require that the software  execute
failure-free for several billion hours. Clearly,
even if the software had achieved such a reli-
ability, one could never assure that the re-
quirement was met. The most reasonable
verifiable requirement is somewhere in the
lo-3  or lOa range.

It is important to understand the nature of the
program when discussing ultra-high require-
ments. Many ultra-reliable applications are
implemented on relatively small, slow, inex-
pensive computers. Furthermore, the critical
programs are small (less than 1000 source
lines of code) and execute infrequently during
an actual mission. With this knowledge, it
may be feasible to test the critical program
segment on several faster machines,
considerably reducing the required test time.

Furthermore, where very high reliability re-
quirements are stated (failure probabilities
< 10-e)  they frequently are applicable to a
software controlled process together with its
protective and mitigating facilities and there-
fore they tend to be overstated if applicable to
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the process alone. An example of a protec-
tive facility is an automatic cut-off system for
the primary process and reversion to analog
or manual control. An example of a mitiga-
tion facility is an automatic sprinkler system
that significantly reduces the probability of
fiie damage in case the software controlled
process generates excessive heat. If the basic
requirement is that the probability of exten-
sive fiie damage shall not exceed 10-e  per
day, and if both protecting and mitigating
facilities are in place, it is quite likely that
further analysis will show the maximum al-
lowable failure rate for the software con-
trolled process to be on the order of lo-3  per
day and hence within the range of current re-
liability estimation methods.

Where the requirements for the software
controlled process proper still exceed the ca-
pabilities of the estimation methodology after
allowing for protective and mitigating facili-
ties, fault tolerance techniques may be ap-
plied. These may involve fault tolerance
[HECH86b]  or functional diversity. An
example of the latter is to control both tem-
perature and pressure of steam generation,
such that neither one of them can exceed
safety criteria. The reduction in failure prob-
ability that can be achieved by software fault
tolerance depends in a large measure on the
independence of failure mechanisms for the
diverse implementations. It is generally eas-
ier to demonstrate the independence of two
diverse functions than it is to demonstrate the
independence of two computer programs,
and hence functional diversity is frequently
preferred.

5.0 SOFTWARE
RELIABILITY ESTIMATION
PROCEDURE

This section provides guidance to the practi-
tioner on how to do software reliability esti-
mation and what types of analysis can be per-
formed using the technique. It defines a
generic step-by-step procedure for executing
software reliability estimation and describes
possible analysis using the results of the es-
timation procedure.

ANSIJAIAA  R-013-1992

5.1 Generic Procedure

An eleven-step generic procedure for estimat-
ing software reliability is listed below. This
generic procedure should be tailored to the
project and the current life-cycle phase.
Some steps will not be used in some applica-
tions, but the structure provides a convenient
and easily remembered standard approach.
The following steps can be used to generate a
checklist  for reliability programs:

1) Identify Application

2) Specify the Requirement

3) Allocate the Requirement

Since this document is concerned only with
the test through operational life-cycle activi-
ties, only steps (4) through (11) are
discussed.

4 )  DefineFailure

5) Characterize the Operational Environment

6) Select Tests

7) Select Modes

8) Collect Data

9) Estimate Parameters

10) Validate the Model

11) Perform Analysis

5.1.1 Define Failure

A project specific failure definition is usually
negotiated by the testers, developers, and
users. It is agreed upon prior to the begin-
ning of test. In spite of this necessary
tailoring, there are often commonalities in the
definition among similar products (e.g., most
people agree that a software bug that when
encountered stops all processing is a failure).
The important consideration is that the
definition be consistent over the life of the
project.

There are a number of specific considerations

9
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relating to the interpretation of failure for
systems. The analyst must determine the an-
swers to these questions:

l Is a failure counted if it is consciously de-
cided not to seek out and remove the cause
of a particular failure?

l Are repeated failures counted?

l What is a failure in a fault-tolerant system?

l Are a series of failures counted if they are
triggered by data degradation?

A discussion of each of these considerations
is provided in [MUSA87,  pp 77-851.

Projects need to classify failures by their
severity. An example classification is pro-
vided in Section 2. Classes are usually sepa-
rated by an order of magnitude in costs.
Impact can not ordinarily be estimated with
great precision. It is desirable to consider
severity by type, and by user requirement.

For some projects, there appears to be a rela-
tive homogeneity with respect to time-of-fail-
ure among high-severity failures. For
example, if 10 percent of the failures
occurring early in test fall in a particular
class, about the same percentage will be
expected to be found in that class late in test.
This permits making, for example, statistical
estimates based on all data to achieve a
smaller confidence interval and then adjusting
them to per class estimates. It also is
possible to weight failure data by a variable
(such as cost) associated with class and to
obtain compound estimates such as failure
cost rather than  failure intensities.

It is recommended that failure times be
recorded in execution time. However,
should execution time not be readily
available, elapsed clock time is a satisfactory
approximation if machine utilization is
constant (when averaged over a time period
comparable to the times between failures). If
utilization is not constant, one often can
weight the clock time by a measure that is
proportional to the utilization, such as num-
ber of uses of a real-time system. Execution
time also can be approximated by natural

1 0

units like transactions.

When failure times are collected from multi-
ple machines functioning simultaneously, in-
tervals between failures should be counted by
considering execution time on all machines.
If the machines have different average in-
struction execution rates, execution times
should be adjusted to a reference machine
[MUSA87,  pp 1624651.

5.1.2 Characterize the Operational
Environment

Characterization of the operational environ-
ment has three aspects: 1) system configura-
tion, 2) system evolution, and 3) system op-
erational profile.

System configuration is the arrangement of
the system’s components. Software-based
systems are just that; they can not be pure but
must include hardware as well as software
components.

Distributed systems are a type of system
configuration. The purpose of determining
the system configuration is twofold:

l To determine how to allocate system relia-
bility to component reliabilities

l To determine how to combine component
reliabilities to establish system reliability
wUSA87,  pp 851061.

In modeling software reliability, it is neces-
s’ary  to recognize that systems frequently
evolve as they are tested. That is, new code
or even new components are added. Special
techniques for dealing with evolution are
provided in [MUSA87,  pp 166-1761.

The system operational profile characterizes
in quantitative fashion how the software will
be used. It lists all operations realized by the
software and the probability of occurrence
and criticality of each operation.

A system may have multiple operational pro-
files or operating modes. They usually repre-
sent difference in function associated with
significant environmental variables. For ex-
ample, a space vehicle may have ascent, on-
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orbit and descent operating modes. Operat-
ing modes may be related to time, installation
location, customer or market segment.
Reliability can be tracked separately for
different modes if they are significant. The
only limitation is the extra data collection and
cost involved.

5.1.3 Select Tests

Many applications of software reliability en-
gineering involve the execution of operations
and collection of failure data. Operations
should be picked to reflect how the system
will actually be used. Reference Appendix C
for information that may be useful in deter-
mining failure rates. In other words, the test
operational profile should represent the field
operational profile.

The tester selects one of the following ap-
proaches:

l Test duplicates actual operational environ-
ments (as closely as possible)

l Testing conducted under more severe
conditions; for extended periods of time -
resulting in failures being accumulated in
less than expected time.

l Capability

l Applicability

l Simplicity

l Insensitivity to Noise

In general, each model should be evaluated
by these criteria, using the best model to
make forecasts.

5.1.5 Collect Data

Data collection must be geared toward the
overall objectives of the software reliability
effort, such as the attainment of a failure-free
interval.

In considering setting up a reliability pro-
gram, one must avoid several pitfalls. The
first is that every bit of information about the
program and what happens to it as it evolves
over the life cycle needs to be kept. The sec-
ond is that clearly defined objectives for the
data collection process are not necessary.
These two pitfalls result in too much effort
expended with too little payback. When a
massive amount of data is required, it is
usually the program manager’s people that
are impacted. Cost and schedule suffer.

The modeling effort must take into account
the specific approach taken by the test team to
expose faults so that accurate forecasts can be
made.

5.1.4 Select Models

The models described in Section 6 have been
identified for giving good results in specific
environments, but it can not be guaranteed
that they will be suitable in new environ-
ments. Therefore it is recommended that
each user compare several models prior to fi-
nal selection.

Two additional points that should be kept in
mind while planning to collect data and col-
lecting data are: (1) motivate the data collec-
tors, and (2) review the collected data
promptly. If these two things are not done,
quality will suffer.

A list of the data collection steps detailed in
Section 7.1 is provided below:

1) Establish the objectives.

2) Set up a plan for the data collection pro-
cess.

A list of the model selection criteria described
in Section 6.1 is provided below:

l Predictive Validity

l Ease of Parameter Measurement

l Quality of Assumptions

3) Apply tools.

4) Provide training.

5) Perform trial run.

6) Implement the plan.

11
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7) Monitor data  collection.

8) Evaluate the data as the process
continues.

9) Provide feedback to all parties.

In general, a process should be established
addressing each of these steps, and a suc-
cessful software reliability data collection
program will emerge.

5.1.6 Estimate Parameters

There are three common methods of parame-
ter estimation: method of moments, least
squares, and maximum likelihood. Each of
these methods has attributes that make it use-
ful. However, maximum likelihood estima-
tion is the most commonly used approach. A
full treatment of parameter estimation is pro-
vided in  [MUSA87,  FARR83, and
SHOO83].  All of the software reliability en-
gineering tools described in Appendix B per-
form parameter estimation as one of their ca-
pabilities using one or more of these
methods.

5.1.7 Validate the Model

Several considerations are involved in prop-
erly validating a model for use on a given
production project. First, it is necessary to
deal with the assumptions of the model under
evaluation. Choosing appropriate failure data
items and relating specific failures to particu-
lar intervals of the life-cycle or change incre-
ments often facilitate this task [SCHN92].
Depending on the progress of the production
project, the model validation data source
should be selected from the following, listed
in the order of preference:

1) Production project failure history (if
project has progressed sufficiently to
produce failures).

2) Prototype project employing similar prod-
ucts and processes as the production pro-
ject.

3) Prior project employing similar products
and processes as the production project
(reference Appendix C)

12

Using one of these data sources, the analyst
should execute the model for several specific
times within the failure history period and
then compare the model output to the actual
subsequent failure history using one of the
following:

1) Predictive validity criteria (Section
6.1.1).

2) A traditional statistical goodness-of-fit
test (e.g., Chi-square or Kolmogorov-
smimov).

It is important that a model be continuously
re-checked for validation, even after selection
and application, to ensure that the fit to the
observed failure history is satisfactory. In
the event that a degraded model fit is experi-
enced, alternate candidate models should be
evaluated using the procedure above.

5.1.8 Perform Analysis

Once the data has been collected and the
model parameters estimated, the analyst is
ready to perform the appropriate analysis.
This analysis may be to estimate the current
reliability of the software, forecast the
number of faults remaining in the code, or
forecasting a testing completion date. Section
5.2 details a set of common analyses
conducted using software reliability theory.

One pitfall to bc careful of is the combination
of a software reliability value into a system
reliability calculation. If the analysis calls for
producing a system reliability figure and the
software reliability is calculated in terms of
execution time, it must be converted to
calendar time for combination with hardware
reliabilities to calculate the system value.

5.2 Recommended Analysis Practice

This section provides details of analysis pro-
cedures for some common engineering or
management activities that can be aided by
software reliability engineering technology.
These details are in most cases a description
of the analysis that must be performed as the
last step of the generic procedure described in
Section 5.1. Although this list is far from
complete, it is a set to start from.
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5.2.1 Estimate Current Reliability

Since software will not fail until the software
is executed and a software fault is manifested
by the computer, the time measurement based
on CPU time for failure data collection is pre-
ferred. However, there are approximating
techniques if the direct measurement of CPU
time is not available pSA87,  pp 156-1581.
When combined with hardware reliability
measurement (to form the system reliability
prediction) the CPU time also can be trans-
formed to calendar time [MUSA87,  pp 113-
1391.

Reliability estimations in test and operational
phases basically follow the same procedure.
However, there is a difference. During the
testing phase, software faults are intended to
be removed as soon as the corresponding
software failures are detected. As a result,
the reliability growth could be observed.
However, in the operational phase, correcting
a software fault involves changes of multiple
software copies in the customers’ sites,
which, unless the failure is catastrophic, is
not always done until the next software re-
lease.

Therefore, the software failure rate usually

remains constant until a new version is re-
leased, in which case a jump in reliability
should be observed. Nevertheless, the users
might change the use of the software to avoid
triggering the known failure. In other words,
the operational profile is changed and certain
growth of reliability could still be observed.

5.2.2 Forecast Achievement of a
Reliability Goal

The date at which a given reliability goal can
be achieved is obtainable from  the software
reliability modeling process illustrated in
Figure 3. As achievement of the reliability
target approaches, the adherence of the actual
data to the model should be reviewed and the
model calibrated if necessary. Refer to
Appendix F, “Using Reliability Models for
Developing Test Strategies.”

5.2.3 Forecast Additional Test
Duration

Additional test duration may be predicted if
the initial and objective failure intensities and
the parameters of the model are known.
(These are identified for each model in
Section 6.) For the Musa Basic exponential
model we have:

Failure Rate

current
failure rate

i
failure rate
objective - 4

+ Timerequiredto
complete testing

Time

) Figure 3 Example Software Reliability Measurement Application

1 3
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At =

where At is the test duration in CPU hr, v, is
the total failures parameter of the model, h,
is the initial failure intensity, and hF is the
objective failure intensity.

The forrnula for the Musa-Okumoto Loga-
rithmic Poisson model is

where 8 is the failure intensity decay pa-
rameter.

Calendar time test duration could be com-
pu ted manually. However, all calculations
are generally available in software reliability
tools (See Appendix B), and the formulas
given above are only occasionally applied
manually.

5.2.4 Establish Conformance with
Acceptance Criteria

If reliability-related criteria are part of soft-
ware acceptance, the model should be se-
lected so that its results can be easily inter-
preted for conformance with the selection
criteria. For example, time-to-failure models
are consistent with requirements for failure-
free intervals. Failure count models are suit-
able for establishing conformance with
maximum failure rate requirements.

It is important to know the impact of
technology on software reliability. This
knowledge will make it possible to design an
efficient development process for a particular
software product. These impact studies have
not been performed to any extent at the
writing of this document, but they could and
should be. For example, the relationship
between effort devoted to design inspection
per thousand source lines of code and the
change in failure intensity should be studied.
This is done by holding other variables
constant as design inspection effort is varied.
The resultant quantity that is measured could
be initial failure intensity at the start of system
test.

5.2.5 Manage Introduction of New
Features into Operational Software

5.2.7 Estimate Maintenance Staffing
Requirements

Decisions about whether and when to intro-
duce new features into operational software
must be made. Introduction of new features
carries the risk of adding new faults and
hence increasing the failure intensity. This
could raise the failure intensity to such a level
that the impact on service is unacceptable.
Software reliability engineering provides a
quantitative way of measuring service and
hence a guide for permitting or delaying the

introduction of the new features. Failures are
regularly recorded during operation and fail-
ure data is entered in a software reliability es-
timation program, which is run at regular in-
tervals (frequently weekly). A running plot
of failure intensity is generated.

A failure intensity objective is selected based
on a balance between the need for new fea-
tures and the need that old features operate
reasonably reliably. The proximity of the
actual failure intensity to the objective is now
used as the criterion for accepting new fea-
tures. New features are accepted only when
the actual failure intensity is sufficiently be-
low the objective that it appears unlikely that
the addition of the new features will increase
the failure intensity substantially above the
objective.

5.2.6 Evaluate Reliability Impact of
Software Engineering Technology
Variables

Three quantities are needed to estimate the
staff required to restore systems after a soft-
ware failure: first, the average time required
for a repair person to restore the system after
a failure (including travel time); second, the
expected operating time of the software in
time units; and third, the expected failure rate
of the software in operation.

Multiplying the failure rate by the operational
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time yields the expected number of failures
per time unit. Using this number and the av-
erage time to restore the system, the number
of repair personnel can be derived. It is im-
portant to assign more repair personnel than
this estimate to account for variations in fail-
ure occurrence that may result in lower sys-
tem availability.

5.2.8 Assist Safety Certification

A software safety failure can be defined as
any software system behavior that involves
risk to human life, risk of injury or risk of
equipment damage. Thus, Failure Severity
#l (see Terminology Section 2 - “Failure
Severity”) failures fall into this category. The
failure rate based on the failures in this cate-
gory can be determined to support software
safety certification. It is important to note
that reliability is a necessary, although not
sufficient, condition to ensure safety and
should not be used as the only criterion for
safety certification.

6.0 SOFTWARE
RELIABILITY ESTIMATION
MODELS

There are many ways to develop a software
reliability model: (a) describe it as a stochas-
tic process, (b) relate it to a Markov model,
(c) define the probability density or distribu-
tion function, or (d) specify the hazard func-
tion. These approaches are all equivalent and
equally correct. There are three general
classes of software reliability estimation mod-
els: Exponential non-homogeneous Poisson
process (NHPP) models, Non-exponential
NHPP models and Bayesian models. The
following paragraphs describe the character-
istics of each general class.

Exponential NHPP Models

Exponential NHPP models use the stochastic
process and the hazard function approach.
The hazard function, z(t), is generally a
function of the operational time, t. Several
different derivations of z(t) are given in
[SHOO9Oa].  The probability of success as a
function of time is the reliability function,
R(t), which is given by:

R(t) = exp  [ -If  4 y)  dyl
0

Sometimes reliability is expressed in terms of
a single parameter: mean time to failure,
(MTTF).  M’ITF is given by:

Ml-IF=  ;R(t)  dt
0

On occasion the reliability function may be of
such a form that MTI’F is not defined. The
hazard function (or failure intensity,
[MUSA87,  pp. 11, 181)  or the reliability
function can be used in this case. The hazard
function can be constant or can change with
time.

Representative models selected for this class
include: Shooman’s model; Musa’s Basic
model; Jelinski and Moranda’s model
(described in Appendix A); and the
generalized exponential model (described in
Section 6.2). Model objectives, assump-
tions, parameter estimates, and considera-
tions for using the model are described in the
appropriate section.

Non-Exponential NHPP Models

Non-Exponential NHPP models also use the
stochastic process and the hazard function ap-
proach. They are generally applicable when
testing is done, according to an operational
profile that is not uniform in nature. Early
fault corrections have a larger impact on the
failure intensity function than later ones.

Representative models selected for this class
include: Duane’s model; Brooks and
Motley’s Binomial and Poisson models;
Yamada’s  S-shaped model (all described in
Appendix A); and Musa and Okumoto’s
Logarithmic Poisson (described in section
6.2). The assumptions and format of the
respective model, its estimates for model
fitting, and finally considerations for the em-
ployment of the model are described in the
appropriate section.

1 5
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Bayesian Models l Simplicity: ease of understanding the con-

Bayesian models differ from NHPP models
in two ways. First, where NHPP models
only allow for change in reliability when a
fault is discovered and corrected, Bayesian
models allow reliability to change based on
the length of failure-free testing time periods.
Second, NHPP models assume that the
hazard function is directly proportional to the
number of faults in the program and hence
the reliability is a function of this fault count.
The Bayesian approach argues that a program
can have many faults in unused sections of
the code and exhibit a higher reliability than
software with only one bug in a frequently
exercised section of code. Representative
models of this class are those developed by
Littlewood lLlTI79].

cept, data collection, program implemen-
tation, and validation.

l Insensitivity to noise: the ability of the
model to produce results in spite of small
differences in input data and parameters
without losing responsiveness to significant
differences

6.1.1 Model Predictive Validity

6.1 Criteria for Model Evaluation

This following criteria should be used for
conducting an evaluation of software
reliability models in support of a given
project.

To compare a set of models on a given set of
failure data, one must examine which of the
fitted models is best in agreement with the
observed data. Afitted model  is one that has
had its parameters estimated from the ob-
served data. The question being asked is: Is
it plausible to have obtained the observed data
by sampling from the fitted model? If F is
the function of the model with estimated
parameters, this question can be answered by
a hypothesis test with a null hypothesis:

Ho  : the failure data are from a model with
distribution function, F.

l Model predictive validity: the performance
and correctness of the forecast quality of
each model. Measures defined for this are:
accuracy, trend, bias, and noise.

l Ease of measuring parameters: the resource
requirement and impact of measuring pa-
rameters for each model, including cost,
schedule impact for data collection, and
physical significance of parameters to the
software development process.

This is called a goodness-of-fit test since it
tests how well the model “fits” the observed
data. Goodness-of-fit tests are a way to
detect systematically fairly gross disagree-
ment between the data and the fitted  model.
The literature on goodness-of-fit tests is quite
extensive; the chi-square and Kolmogorov-
Smirnov tests are the most popular tests
WOEL7  11.

l Quality of assumptions: the closeness to
the real world, and adaptability to a special
environment.

In addition to these techniques for assessing
model fit, the following four measures can be
used to compare model forecasts on a set of
failure data:

l Capability: the ability of each model to esti-
mate useful quantities needed by software
project personnel, including expected
MTTF, time to reach a specified MTI’F
goal, and the required resources to reach
that goal.

6.1.1.1 Accuracy

l Applicability: the ability to handle program
evolution and change in test and operational
environment.

Forecasting accuracy is measured by the
prequential likelihood (PL) function
lJJ’lT86].  Let the observed failure data be a
sequence of times tl,  tz,..., tl-1  between
successive failures. The objective is to use
the data to forecast the future unobserved Ti.
More precisely, we want a good estimate of
Fi(t),  defined as P(Ti,<t),  i.e., the probability
that Ti is less than a variable t. The

1 6

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:28:13 Information Handling Services, 1999



AIAA  R - 0 1 3  92 m 0695534 OOOOb51  OT5  m
ANSI/AIAA  R-013-1992

forecasting distribution Pi(t) for Ti based on
t1, t2, *a*, ti-1 will be assumed to have a pdf
(probability density function).

fi(t> = iPi

For such one-step-ahead forecasts of
Tj+l,...Tj+n,  the prequential likelihood is:

j+*_
PL, = nfitti>

i= j+l

Since this measure is usually very close to
zero, its natural logarithm is frequently used
for comparisons. Given two competing
software reliability models A and B, the
prequential  likelihood ratio is given by

PLR, =
P In(A)
P In(B)

The ratio represents the likelihood that one
model will give more accurate forecasts than
the other model. If PLR, + 00  as n -+ 00,
model A is favored over model B.

6.1.1.2 Bias

A model is considered biased if it forecasts
values that are consistently longer than the
observed failure times, or consistently shorter
than the observed times. To measure the
amount of a model’s bias, one can compute
the maximum vertical distance (i.e., the
Kolmogorov Distance [HOEL7  11)  between
the line of unit slope and the values of the
probability integral transformation given by:

Ui = Fi(ti)

Each ui is a probability integral transform of
the observed ti using the previously calcu-
lated predictor Fi based upon tl, t;?, . . . . ti-1.
That is, ul is the estimated model distribution
function evaluated at the observed failure
times. To identify the direction toward which
a model is biased, use the notation that a pos-
itive number means that the model tends to be

optimistic, while a negative number repre-
sents the model to be pessimistic. In either
case, the smaller the absolute value of the
number is, the less bias there is inherent in
the model.

6.1.1.3 Trend

In some cases a model may be optimistic in
an early set of forecasts and pessimistic in a
later set of forecasts. The bias test described
above will average these effects, and the
model will appear unbiased. In this case, it is
important to examine the ui’s for trend.
Trend is defined as the Kolmogorov Distance
between the line of unit slope and the cdf of
yi,  where

Xi = -lIl(l-Ui)

i

c X*J
j=l

Yi=, forisn

c ‘j
j=l

The trend represents the consistency of the
model’s bias. A small value means that the
model is more adaptable to changes in the
data behavior, and hence yields better
performance.

6.1.1.4 Noise

The test for noise is roughly analogous to the
mean square error in classical statistics. The
goal of the measure is to indicate objectively
which model is giving the least variable
forecasts (i.e., finding the most stable model
for a particular data set), The measure is
defined as

* ri-rim1
Noise = c

i=2 I Iri-l

where ri  is the forecasted failure rate (l/Ti).
Note that the forecasted median of the failure
time distribution, denoted by mi,  may be
used in place of ri. In either case, small
values represent less noise in the forecasts of
the model, indicating better smoothness. A
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Noise value equal to infinity indicates that a
failure rate of zero has been forecasted by the
model.

6.1.2 Ease of Measuring Parameters

Ease of measuring parameters refers to the
number of parameters a model requires, and
the difficulties in estimating these parameters.
Most software reliability estimation models
incorporate either two or three parameters.
As a rule-of-thumb, a model requires failure
data equal to at least five times the number of
parameteres to be estimated. In general, a
three-parameter model can achieve better
accuracy in fitting the failure data curve than
can a two-parameter model. However, this is
not generally true for making software
reliability forecasts. When two models
demonstrate the same level of forecasting
capability, the model which requires fewer
parameters should be chosen. This is not
only because a model with fewer modes is
easier to apply, but also because a software
reliability engineer can more successfully
interpret the physical significance of the
parameters to provide appropriate feedback to
the software development process.

6.1.3 Quality of Assumptions

The assumptions that a software reliability
model makes should be as close to the real
project testing and operational situation as
possible. Common assumptions made in the
software reliability models are:

l Test input randomly encounter faults.

l The effects of all failures are independent.

l The test space “covers” the use space.

l All failures are observed when they occur.

l Faults are immediately removed upon fail-
ure or not counted again.

l The software failure rate is related to the
number of software faults remaining in the
software; software reliability models spec-
ify this relationship.

If an assumption is testable, it should be sup-

1 8

ported by data to validate the assumption. If
an assumption is not testable, it should be
examined through the viewpoint of logical
consistency and software engineering experi-
ence. Moreover, all model assumptions
should be judged by their clarity and explicit-
ness. This will help to determine whether a
particular model applies to the current project.

6.1.4 Capability

Capability refers to the ability of a model to
estimate reliability related quantities for
software systems. These quantities include:

l The present reliability of the software, the
software failure rate, or mean-time-to-fail-
ure (MTI’F),  or the failure rate distribution.

l Confidence intervals for all estimated
parameters.

l Expected date of achieving a specified
reliability, failure rate, or M’ITF objective.

l Resource (human and computer) and cost
estimates related to achieving the reliability
objective.

Other than the capability to make software re-
liability measurements in the testing and oper-
ational phase, the capability of a model to
make software reliability predictions in the
system design and early development phases
is also very important. These predictions
should be examined through future research
in software metrics, the software develop-
ment environment, and the operational
profile.

6.1.5 Applicability

Applicability of the software models should
be examined through various sizes, struc-
tures, functions, and application domains.
An advantage of a specific model is its
usability in different development and
operational environments, and different life-
cycle phases. In the application of software
reliability models, the following situations
should be dealt with by the models:

l Evolving software (i.e., software that is in-
crementelly integrated during testing),
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l Classification of failure severity, 6.2 Recommended Models

l Incomplete failure data,

l Hardware execution rate differences,

l Multiple installations of the same software,

l Project environments departing from model
assumptions.

6.1.6 Simplicity

The following models are recommended as
initial models for software reliability estima-
tion; the order is arbitrary: the Schneidewind
model, the generalized Exponential model,
the Musa / Okumoto Logarithmic Poisson
model and the Littlewood / Verrall model. If
these models can not be validated (see Sec-
tion X1.7)  or do not meet the criteria defined
in Section 6.1 for the project, alternative
models are described in Appendix A.

Simplicity refers to three aspects of a model:
the data collection process, the modelling
concept, and its implementation by a software
tool. Simplicity in data collection reduces the
measurement cost, increases the data
accuracy, and makes it easier for model
application. Simplicity in the modeling con-
cepts makes it easier to understand the as-
sumptions, estimate the parameters, apply the
models, and interpret the results. Simplicity
in the model implementation encourages an
efficient use of computers to facilitate the
model applications which are normally
computationally intensive.

6.2.1 Recommended Model:
Schneidewind Model

6.2.1.1 Schneidewind Objectives

The objectives of this model are to forecast
the following software product attributes:

l Number of failures that will occur by a
given time (execution time, labor time, or
calendar time)

l Maximum number of failures that will
occur over the life of the software

In choosing a model, one should give weight
to simplicity. Until an organization has prac-
ticed reliability estimation a few times, no
more complex models are warranted, nor in
general will there be data to support more
complex models.

l Maximum number of failures that will
occur after a given time

l Time required for a given number of
failures to occur

l Number of faults corrected by a given time
6.1.7 Insensitivity to Noise

Software reliability data generally contain
noise irrelevant to the modeling process. The
most common source of noise is that soft-
ware failure data is recorded in project cal-
endar time rather than in software execution
time. Even when software failures are
tracked carefully based on execution time, the
software testing process may be inconsistent
with the model assumptions (e.g., the soft-
ware is not tested randomly). Therefore, a
model should demonstrate its validity in an
ideal situation as well as in situations when
the failure data is incomplete or contains
measurement uncertainties.

l Time required to correct a given number of
faults

l Number of outstanding (observed but not
corrected) faults at a given time

l Incremental time required to correct a given
number of outstanding faults

l Time required for outstanding faults to
reach a given value

The basic philosophy of this model is that as
testing proceeds with time, the failure
detection process changes. Furthermore,
recent failure counts are usually of more use
than earlier counts in forecasting the future.
Three approaches are employed in utilizing

ANSI/ALAA  R-013-1992
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the failure count data, i.e. number of failures
detected per unit of time. Suppose there are
m intervals of testing and fi failures were
detected in the ifh  interval, one of the
following can be done:

l Utilize all of the failures for the m intervals

l Ignore the failure counts completely from
the first s - 1 time intervals (2 5 s 5 m)
and only use the data from intervals s
through m.

l Use the cumulative failure count from
intervals 1 through s - 1, i.e.

s-l
Fs-l = c f i

i=l

The first approach is applicable when one
feels that the failure counts from all of the
intervals are useful in predicting future
counts. The second approach is to be used
when it is felt that a significant change in the
failure detection process has occurred and
thus only the last m -s + 1 intervals are
useful in future failure forecasts. The last
approach is an intermediate one between the
other two. Here it is felt that the combined
failure counts from the first s - 1 intervals
and the individual counts from the remaining
are representative of the failure and detection
behavior for future forecasts.

6.2.1.2 Schneidewind Assumptions

The assumptions to the Schneidewind model
IilC

l The number of failures detected in one
interval is independent of the failure count
in another.

l Only new failures are counted.

l The fault correction rate is proportional to
the number of faults to be corrected.

l The software is operated in a similar
manner as the anticipated operational usage.

l The mean number of detected failures

20

decreases from one interval to the next.

l The intervals are all the same length.

l The rate of failure detection is proportional
to the number of faults within the Program
at the time of test. The failure detection
process is assumed to be a nonhomoge-
neous Poisson process with an exponen-
tially decreasing failure detection rate. The
rate is taken to be of the form

di = crexp(-pi)

for the i* interval where a > 0 and b> 0 are
the constants of the model.

6.2.1.3 Schneidewind Structure

Two parameters are used in the model: 01,
which is the failure rate at time m=O, and p,
which is a proportionality constant that
affects the failure rate over time (i.e., small p
implies a large failure rate; large p implies a
small failure rate). In these  estimates: m is
the last observed count interval; s is an index
Of time intervals; Xk iS  the number Of
observed failures in interval k, X,-l  is the
number of failures observed from 1 through
s-l intervals; X,, is the number of observed
failures from interval s through m; and X, =
K-1 + qt. The likelihood function is then
developed as

IogL = X,[logX, - 1- log(l- exp(+m))]

+x,-$%(1  - exP(-P(s  -l)))]

+x,,[log(l  - exP(-P)) 1
-py(s+k-l)X,+k

k=O

This function is used to derive the equations
for estimating a and p for each of the three
approaches described earlier. In the equa-
tions that follow, a and p are estimates of the
population parameters.
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Parameter Estimation: Approach 1

Use all of the failure counts from interval 1
through m (i.e., s=l). The following two
equations are used to estimate p and a,
respectively.

1 m - l

c
*k+l

exp@)-l-  exp(L)-1  = kzOk  xm

P*m

a = 1- exp(+m)

Parameter Estimation: Approach 2

Use failure counts only in intervals s through
m (i.e., 1 ( s s m). The following two
equations are used to estimate j3 and 01,
respectively. (Note that approach 2 is
equivalent to approach 1 for s = 1.)

1 m-s+1 m-s

c
*k+s

exp(  p) - 1 - exp(  P(m - s + l)) - 1 = kzok  *s,m

P*,m

a= l-exp(-P(m-s+l))

Parameter Estimation: Approach 3

Use cumulative failure counts in intervals 1
through s-l and individual failure counts in
intervals s through m (i.e., 2 5 s 5 m). This
approach is intermediate to approach 1 which
uses all of the data and approach 2 which
discards “old” data. The following two
equations are used to estimate p and a,
respectively. (Note that approach 3 is
equivalent to approach 1 for s = 2.)

(S-l)*s-1  *s,m mxm

exp@(s  - 1)) - 1 + exp(P)  - 1 - exp(pm)  - 1
t-s

= z(s+k-l&+k
k = O

P*m

a = 1 - exp(+m)

Mean Square Error Criterion

The Mean Square Error (MSE) criterion can
be used to select one of the three approaches
by finding the optimal value of s. The MSE
computes the sum of the squared differences
between model predictions and actual
cumulative failure counts x(i) in the range s I
i s m. The following equation applies to
approach 2 above. For approach 1 and
approach 3, s=l.

Er p(a / 1- exp(+(i  - s + 1))) - x(i)12

m-s+1

Thus, for each value of s, compute MSE
using the above formula. Choose s equal to
the value for which MSE is smallest. The
result is an optimal triple (p,  a, s) for your
data set. Then apply the appropriate ap-
proach to your data.

6.2.1.4 Schneidewind Limitations

The limitations of the model are the
following:

l It does not account for the possibility that
failures in different intervals may be
related.

l It does not account for repetition of
failures.

l It uses intervals of equal length.

l It does not account for the possibility that
failures can increase over time as the result
of software modifications.

These limitations can be ameliorated by
configuring the software into versions that
represent the previous version plus
modifications. Each version represents a
different module for reliability prediction
purposes: the model is used to predict
reliability for each module.

2 1
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6.2.1.5 Schneidewind Data
Requirements

The only data requirements are the number of
errors, fi,  i = 1, . . . . m, per testing period.

Although a data base is not required, it would
be very useful to create and maintain a
reliability data base for several reasons: input
data sets could be rerun, if necessary;
reliability predictions and assessments could
be made for various projects; predicted
reliability could be compared with actual
reliability for these projects. This data base
would allow the model user to perform
several useful analyses: to see how well the
model is performing; to compare reliability
across projects to see whether there are
development factors that contribute to
reliability; and to see whether reliability is
improving over time for a given project or
across projects.

6.2.1.6  Schneidewind Applications

The major model applications are described
below. These are separate but related uses of
the model that, in total, comprise an
integrated reliability program.

l Forecasting: Forecasting future failures,
fault corrections and related quantities
described in section 6.2.1.7.

l Control: Comparing forecast results with
pre-defined goals and flagging software
that fails to meet those goals.

l Assessment: Determining what action to
take for software that fails to meet goals
(e.g., intensify inspection, intensify
testing, redesign software, revise process).
The formulation of test strategies is also
part of assessment. Test strategy
formulation involves the determination of:
priority, duration and completion date of
testing, allocation of personnel, and
allocation of computer resources to testing.

6.2.1.7 Reliability Forecasts

Using the optimal triple (cr$,s)  which were
given in section 6.2.1.3, various reliability

22

forecasts can be computed. The approach 2
equations are given where T 2 s. For
approach 1 and approach 3, s=l and T ~1,
where T is preferably execution time but can
be labor time or calendar time.

l Time to detect a total of F failures, when
the current time is t and X(t) failures have
been observed

Tf 0)  =

lo+  / (a - P(F(t)  - X(t))) / p] -(t-s + 1)

for a > P(F(t)  + X(t))

l Forecasted Number of Failures after time T

F(T) = (a / p)[l - exp(-P(T - s + I))]

l Maximum Number of Failures (T  7 00)

I+)=  a/P

l Maximum Number of Remaining Failures,
forecasted at time t, after X(t) failures have
been observed

RF(t) = a / P-X(t)

l Faults Corm&d after time T

C(T) = (cr  / p)[l - exp(-P((T  - s + 1) - At))]

where At is the mean lag in correcting faults
after failures have been observed. (At can
be estimated from the data.)

l Time to correct C faults

T, =At+[(log[a/(a-pC)])/P]+s-1

for a > PC

l Outstanding Faults Remaining at time T

W-9 = F(T) - C(T)

l Outstanding Fault Correction Time

ATN =[log((Npexp(P(T-s+l))la)+l)]/P
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where N is the number of faults to correct
starting at time T.

l Outstanding Fault Time

The predicted time for the number of
outstanding faults to reach the value N is

TN =[(log[(aexp@T&l)/flN])/p]+s-1

6.2.1.8 Schneidewind
Implementation Status and Reference
Applications

The model has been implemented in
FORTRAN by the Naval Surface Warfare
Center, Dahlgren, Virginia as part of the
Statistical Modeling and Estimation of
Reliability Functions for Software
(SERFS).  It can be run on an IBM PC (or
compatible) or DEC VAX and is available on
DOS diskette or magnetic tape, respectively.

Known applications of this model are:

l IBM, Houston, Texas: Reliability
prediction and assessment of the on-board
NASA Space Shuttle software [SCHN92]

l Naval Surface Warfare Center, Dahlgren,
Virginia: Research in reliability prediction
and analysis of the TRIDENT I and II Fire
Control Software PARR911

l NASA JPL, Pasadena, California:
Experiments with multi-model software
reliability approach kYU92]

l Hughes Aircraft Co., Fullerton, California:
Integrated, multi-model approach to
reliability prediction [BOWE87]

6.2.2 Recommended Model:
Generalized Exponential Model

6.2.2.1 Generalized Exponential
Objectives

Many popular software reliability models
yield simular results. The basic idea behind
the generalized exponential model is to
simplify the modeling process by using a

ANSI/AMA  R-013-1992

single set of equations to represent models
having exponential hazard functions.

The generalized exponential model contains
the ideas of several well-known software
reliability models. The main idea is that the
failure occurence  rate is proportional to the
number of faults remaining in the software.
Furthermore, the failure rate remains constant
between failure detections and the rate is
reduced by the same amount after each fault
is removed from the software. Thus, the
correction of each fault has the same effect in
reducing the hazard of the software. The
objective of this model is to generalize the
forms of several well-known models into a
form that can be used to forecast:

l Number of failures that will occur by a
given time (execution time, labor time, or
calendar time)

l Maximum number of failures that will
occur over the life of the software

l Maximum number of failures that will
occur after a given time

l Time required for a given number of
failures to occur

l Number of faults corrected by a given time

l Time required to correct a given number of
faults

6.2.2.2 Generalized Exponential
Assumptions

The basic assumptions of the Generalized
Exponential Model are:

l The failure rate is proportional to the cur-
rent fault content of a program.

l All failures are equally likely to occur and
are independent of each other.

l Each failure is of the same order of severity
as any other failure.

l The software is operated in a similar
manner as the anticipated operational usage.

2 3
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l The faults which caused the failure arc cor-
rected instantaneously without introduction
of new faults into the program.

6.2.2.3 Generalized Exponential
Structure

The Generalized Exponential Structure begins
with a simple, but relatively general, form for
the software hazard function:

z(x) = Wo - EC(x)1

where

X = a time or resource variable which
gauges the progress of the project.

E,= the initial number of faults in the
program which will lead to failures.
It can also be viewed as the number
of  fa i lu res  which  would  be
experienced if testing continued
indefinitely.

E,= the number of faults in the program
which have been found and corrected
once x units of time or effort have
beenexpended

K = a constant of proportionality; failures
per resource or time units, per fault
remaining

Inspection of this equation shows that the
number of remaining faults, En is given by

Note that this equation has no fault generation
term; it assumes that no new faults which will
lead to failures are generated during program
debugging. More advanced models that
include fault generation are discussed in
[MUSA87]  and [SHOG83].

Many models in common use can be
represented by the above set of equations
with various assumptions regarding the

Table 1 Common Reliability Models that Fit the Generalized Exponential Form for the
Failure Rate Function

MODELNAME ORIGINAL HAZARD
FUNCTION E&k%%&

COMMENTS

Generalized Form

Exponential model

[SHGG72]

WZo  - E,(x)1

K’[E, / IT - %(x)1

-

&=&/IT

K=K’/I’r

Normalized with
respect  to IT, the
number of instructions

Jelinski-Moranda
[JELI72]

Basic Model
[MUSA7Q

NY-W)

Ml - P/v01

Applied at the
discovery of an error
and before it is
COlTt!Cted

If the same
assumptions are used
to predict m and Ec,
then this model  and the
exponential model are
the same.

L43garithmic
[MUSA83]

h,==0
Eo - J%(x)

= Eoexp  (-4~0

Basic assumption is
that the remaining
number of errors
decreases
exponentially.

2 4
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parameters and the form that the fault
correction function, Et(x), takes. Some of
these models are summarized and compared
in Table 1. In the original development of
each model in this table, one or more time or
resource variables were used. In retrospect,
all of the models can, in general, be phrased
in terms of any of the time or resource
variables given in Table 1. Thus, unless
stated to the contrary, the use of a specific
time or resource variable does not differen-
tiate one model from another.

Given the data defined in section 6.2.2.5,
estimation of any of the model parameters
given in Table 1 reduces to a problem in
statistical parameter estimation [HOEL’I  l]  or
[SHOO90a].  There are three basic methods:
moments, least squares, and maximum
likelihood. Although the original de-
velopments of the various models or some of
the computer tools available to support these
models may have used only one or two of
these methods, all three are applicable to each
of the models.

The simplest method of parameter estimation
is the moment method. Consider the gener-
alized form with its two unknown parameters
K and  Ec,. The classical technique of moment
estimation would match the fiit and second
moments of the probability distribution to the
corresponding moments of the data. A slight
modification of this procedure is to match the
first moment, the mean, at two different
values of x. That is, letting the total number
of runs be n, the number of successful runs
be r, the sequence of clock times to failure tl,

t,,-r  and the sequence of and the se-
$eiie  of clock times for runs without failure
Tl , T2, . . . . Tr yields,

z(x) _ Failures (x) _ y
Hours (x) (6.1)

where

Equating the unified form equation with
equation (6.1) at two different values of time

yields

z(xl) = = = K[E, - E,(x,)]
4

(6.2)

z(x2)  = -$  = K[E, - Ec(x2)] (6.3)

Simultanaeous solution of these two sets of
equations, equations (6.2) and (6.3),  yields
estimators denoted by *,  for the parameters.

E x ‘(‘l)

i?, =
c 1-+-p)

1 - -
4x2)

= 4x2  Ech - 4x1 %(x2

4x2)  - 4x1)
(6.4)

& 4x1)
k -EM

(6.5)

Since all of the parameters of the five models
in Table 1 are related to Eo and K by simple
transformations, equations (6.4) and (6.5)
along with the transformations (parameter
equivalences) hold Thus these equations can
be used to obtain moment estimates for all the
models. For example, we could start using
the Musa Basic model of Table 1 and apply
the moment estimate procedure to determine
i,  and c,, in an analogous fashion to what
was done in equations (6.2) and (6.3). More
simply, we could use equations (6.4) and
(6.5) and the transformation v, = E, and CL,
=Kl&toobtain

$0 &,- z(x2PJ4 - z(xl EC (X2

4x2)  - 4x1)

ipiE,
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_ 4x2)-44  *

EcwEc(x2)

4x2)J3,(4  - zWc(x2)

4x2)  - 4x1)

i,  =
+2p&+ +&(x2)

u+-%k2)

Which are the moment estimation equations.
Similar results can be obtained for the other
models in Table 1. More advanced estimates
of the model parameters can be developed
using least squares and maximum likelihood
estimation theory ([SHGCNOa].

6.2.2.4 Generalized Exponential
Limitations

The generalized exponential model has the
following limitations:

l It does not account for the possibility that
each failure may be dependent on others

l It assumes no new faults are introduced in
the fault correction process

l Each fault detection may have a different
impact on the software when the fault is
corrected. The Logarithmic model handles
this by saying that earlier fault corrections
have a greater impact than later ones.

l It does not account for the possibility that
failures can increase over time as the result
of program evolution, although techniques
for handling this limitation have been
developed.

6.2.2.5 Generalized Exponential
Data Requirements

During test, a record will be made of each of
the total of n test runs. The test results
include the r successes and the n-r failures
along with the time of occurrence measured
in terms of clock time and operational
execution time, or test time if operational tests
are unavailable. Additionally, there should
be a record of the times for the r successful

26

runs. Thus, the desired data is the total
number of runs n, the number of successful
runs r, the sequence of clock times to failure
t1,  t2,  a*., tnmr  and the sequence of clock times
for runs without failure Tl,  T2,  . . . . Tr. All
the times should be for actual or simulated
operation; however, if only test time is
available, that should be recorded. A
description is needed along with the data
describing whether is represents operation,
simulated operation, or test and the
circumstances and conditions governing the
input data. If possible, a similar set of
operational data should be recorded.

6.2.2.6 Generalized Exponential
Applications

The Generalized Exponential Model(s) tend
to be optimistic. It is applicable when the
operational profile is “regular,” and the
software debugging process is well
controlled (i.e., the fault correction process
tends to be complete and not error prone.)

The major model applications are described
below. These are separate but related uses of
the model that, in total, comprise an
integrated reliability program.

l Forecasting: forecasting future failures,
fault corrections, and related quantities
described in section 6.2.2.7.

l Control: comparing forecast results with
predefined  goals and flagging software that
fails to meet those goals.

l Assessment: determining what action to
take for software that fails to meet goals
(e.g., intensify inspection, intensify
testing, redesign software, revise process).
The formulation of test strategies is also
part of the assessment. Test strategy for-
mulation involves the determination of:
priority, duration, and completion date of
testing, allocation of personnel, and
allocation of computer resources to testing.

6.2.2.7 Reliability Forecasts

Besides the estimate of the total number of
faults given by go,  other estimates are:
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l Estimated time to remove the next m faults
n+IIl
c

1
= j=.+lk,(fi,  - j+l)

l Estimate of the current failure rate at time

z = ii,  (& exp(-IZ,z))

For other quantities that can be estimated, see
the references listed in paragraph 6.2.2.8.

6.2.2.8 Generalized Exponenential
Implementation Status and Reference
Applications

The Generalized Exponential Model has not
been implemented as a standalone model.
The many models it represents, however,
have been implemented in several tools
including SMERFS from the Naval Surface
Warfare Center, Dahlgren, VA, Software
Reliability Modeling Program (SRMP) from
the the Center for Software Reliability in
London, England, and RELTOOLS from
AT&T. See Appendix B for details.

While the generalized exponential model has
not been used widely, many of the specific
models that it covers as special cases have
been applied successfully. See the following
for example applications:

l Jelinski Zand  Moranda, P. B., “Software
Reliability Research,” W. Freiberger,
Editor, Statistical Computer Performance
Evaluation, Academic Press, New York,
pp. 465-484.

l Shooman, M. L. and Richeson, G.,
“Reliability of Shuttle Control Center
Software,” Proceedings Annal Reliability
and Maintainabilty Symposium, January
1983, pp. 125-135.

l Kruger, G. A., “Validation and Further
Application of Software Reliability Growth
Models,” Hewlett-Packard Journal, April
1989, pp. 75-79.
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6.2.3 Recommended Model: Musa /
Okumoto Logarithmic Poisson
Execution Time Model

6.2.3.1 Musa / Okumoto Objectives

The logarithmic Poisson is especially applica-
ble when the testing is done according to an
operational profile that is very nonuniform in
nature. Early fault corrections have a larger
impact on the failure intensity function than
later ones. The failure intensity function
tends to be convex with decreasing slope for
this situation. Thus a logarithmic Poisson
model may be very appropriate for this
circumstance.

If one is also interested in relating calendar
time considerations (e.g., completion of test-
ing, resource management, etc.) to reliability,
the logarithmic Poisson is the only non-ex-
ponential model that can do this at this time.

Considerations relating to computer utiliza-
tion, personnel level, and current and
projected failure rate trade-offs can be
performed to balance reliability considera-
tions with time and resource constraints.

The number of failures occurring over an
infinite amount of time is unbounded for this
model [MUSA87].  It is especially applicable
when high nonuniformity is experienced in
the operational profile. The belief is that as
one detects the earlier faults a greater
reduction in the failure intensity is experi-
enced. With a highly non-uniform profile
exhibited, early fault corrections make a more
substantial impact on the failure behavior of
the software than later ones. This behavior
of the failure intensity can be more adequately
modeled by a logarithmic Poisson approach.

If there is a decreasing effectiveness of the
repair process, then this model can yield an
unbounded number of failures even though
the number of faults may be finite.

6.2.3.2 Musa / Okumoto
Assumptions

The specific assumptions for this model are:

l The software is operated in a similar
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manner as the anticipated operational usage.

l Failures are independent of each other.

l The failure intensity decreases exponential-
ly with the expected failures experienced.

Note: There are two consequences of the
third assumption. First, the expected number
of failures is a logarithmic function of time.
Second, the model may report an infinite
number of failures.

6.2.3.3 Musa / Okumoto Structure

From the model assumptions we have:

h(z) = failure rate function after t amount of
execution time has been expended

The parameter h, is the initial failure rate
function and 0 is the failure rate decay pa-
rameterwith 0>0.

Using a reparameterization of p, = 8-l and
p1 = h,B, then the maximum likelihood
estimates of PO and p1 are shown in
[MUSA87]  to be the solutions of the
following equations:

e=p,-  nA
ln(l+  PA)

f&i ! -
Pl i=l l+ PlL (l+ht.):tnjl+ar.)

Here h is the cumulative CPU time from start
to the current time. Over this period, we
have observed a total of n failures. Once
maximum likelihood estimates are found for
p, and &, the maximum likelihood estimates
for 9 and X, are, using the invariance prop-
erty of such estimators:

A

9 = iln(l+  &tn) and

2 8

L = ii&l
6.2.3.4 Musa / Okumoto Limitations

Two limitations are:

l The failures may not be independent of one
ZUlOtlltX

l The failure intensity may rise as moclifica-
tions are made to the software.

6.2.3.5 Musa / Okumoto Data
Requirements

The required data is either:

l The time between failures, i.e., the X i’s.

l The time of the failure occurrences, i.e.,
i

ti= Xjc
j=l

6.2.3.6 Musa / Okumoto
Applications

The major model applications are described
below. These are separate but related
applications that, in total, comprise an
integrated reliability program.

l Prediction: Estimating future failure times,
fault corrections, and related quantities
described in Musa’s book [MUSA87].

l Control: Comparing prediction results with
pre-defined goals and flagging software
that fails to meet goals.

l Assessment: Determining what action to
take for software that fails to meet goals
(e.g., intensify inspection, intensify test-
ing, redesign software, revise process).
The formulation of test strategies is also a
part of assessment. It involves the de-
termination of: priority, duration and com-
pletion date of testing, and allocation of
personnel and computer resources to
testing.
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6.2.3.7 Reliability Forecasts

In their book, Musa, Iannino, and Okumoto
[MUSA87]  show that from the assumptions
above and the fact that the derivative of the
mean value function is the failure rate
function, we have:

i(2)=  * i”
ho02  + 1

w= mean number of failures experienced
by the time z is expended

= iln(i,&  + 1)

The estimates of additional reliability mea-
sures are provided in the references listed in
paragraph 6.2.3.8.

6.2.3.8 Musa / Okumoto
Implementation Status and Reference
Applications

The model has been implemented by the
Naval Smface  Warfare Center, Dahlgren, VA
as part of SMERFS. It can be run on any
computer system with a FORTRAN compiler
and is available upon request.

This model has also been implemented in the
set of programs written by AT&T (see
Appendix B for details).

This model has been applied widely. See the
following for example applications:

. Musa, J. D., Iannino, A., and Okumoto,
K., Software Reliability: Measurement,
Prediction, and Application, New York,
McGraw-Hill, 1987.

l Musa, J. D. and Okumoto, K., “A
Logarithmic Poisson Execution Time
Model for Software Reliability Measure-
menc”  Proceedings of the 7th International
Conference on Software Engineering,
Orlando, FL, 1984, pp. 230-238.

. Ehrlich, W. K., Stampfel, J. P., and Wu,
J. R., “Application of Software Reliability

ANSI/ALU R-013-1992

Modeling to Product Quality and Test
Process,” Proceedings of the IEEE/TCSE
Subcommittee on Software Reliability
Engineering Kickoff Meeting, NASA
Headquarters, Washington, DC, April
1990, paper 13.

6.2.4 Recommended Model:
Littlewood / Verrall Model

6.2.4.1 Littlewood / Verrall
Objectives

The intention of the Littlewood / Vex-t-all  is to
model the doubly stochastic nature of the
software failure process. There are two basic
sources of uncertainty which need to be taken
into account when software fails and fixes are
attempted.

In the first place there is uncertainty about the
nature of the operational environment: we do
not know when a certain input will show
itself, and in particular we do not know
which inputs will be selected next. Thus,
even if we had complete knowledge of which
inputs were failure-prone (and of course this
is never the case), we still could not tell with
certainty when the next one to induce a failure
would be received. All software reliability
models recognize this source of uncertainty,
and it is often presented mathematically by a
simple Poisson process: i.e., it is assumed
that failures occur purely randomly. This
means the time to next failure, for example,
will have an exponential distribution.

The second source of uncertainty concerns
what happens when an attempt is made to
remove the fault that caused the failure. The
aforementioned models that assume that the
process of failures is locally purely random,
it is this uncertainty that governs the changes
in the failure rate as debugging proceeds:
i.e., it determines the nature of the reliability
growth. There is uncertainty here for two
main reasons. In the first place, it is clear
that not all the faults contribute the same
amount to the unreliability of a program.
Some contribute a greater amount than
others. If the software has failed because a
fault has been detected that contributes a large
amount to the overall reliability, then there
will be a correspondingly large increase in the
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reliability (reduction in the failure rate) when
this is removed. In the second place, we can
never be sure that we actually have removed a
fault successfully; indeed it is possible that
some new fault has been introduced and the
reliability of the program made worse. The
result of these two effects is that the failure
rate of a program changes in a random way
as debugging proceeds: there will likely be a
downwards jump in this rate at each fix
attempt, but this is not certain, and the size of
the jump in unpredictable.

The Littlewood / Verrall model, unlike the
other models discussed, takes account of
both of these sources of uncertainty in the
failure process - that due to basic unpre-
dictability of the environment which profers
inputs for execution, and that due to an
intrinsic uncertainty of the effects of the hu-
man activities during debugging.

6.2.4.2 Littlewood / Verrall
Assumptions

The following assumptions apply to the
Littlewood / Verrall model:

l The software is operated during the collec-
tion of failure data in a manner that is
similar to that for which predictions are to
be made; the test environment is an accurate
representation of the operational
environment.

l The times between successive failures are
conditionally independent exponential ran-
dom variables, i.e., locally (between fail-
ures) the failure process is purely random.

l The fixing process involves uncertainty
represented by allowing the successive
failure rates, following successive fix
attempts, to be a sequence of independent
random variables.

6.2.4.3 Littlewood / Verrall
Structure

This model treats the successive rates of
occurrence of failures as fixes take place, as
random variables. It assumes

The sequence of rates hi is treated as a
sequence of independent stochastically
decreasing random variables. This reflects
the likelihood, but not certainty, that a fii  will
be effective. It is assumed that

g(hi ) = yf(  i)” Xy-‘e-w(i)‘i

r(a)
for hi > 0

which is a gamma distribution with pa-
rameters a,w(i).

The function v(i)  determines the reliability
growth. If, as is usually the case, v(i)  is an
increasing function of i, it is easy to show
that hi forms a stochastically decreasing se-
quence. For this model a fix may make the
program less reliable, and even if an
improvement takes place it is of uncertain
magnitude.

By setting v(i)  to either &,  +&i  o  r

p, + &i*  and eliminating a, Littlewood and
Verrall present a method of estimating p, and
PI based upon maximum likelihood. By
eliminating a from the likelihood equations;
i.e., the estimate of a can be expressed as a
function of the estimates of the other two
parameters. See [FARR83,LITT73] for
details. The maximum likelihood calculation
needs to be done using a numerical
optimization routine which is available in
commercially available software, such as
those found in Appendix B.

Least squares estimates of the parameters
(cx,&,&) are found by minimizing:

S(CZ,~,,&)=~ Xi-y 2
i=l c -1

See PARR831  for further details.

6.2.4.4 Littlewood / Verrall
Limitations

P( t j JAi = h., ) = hieBaiti

3 0

The primary limitation as with all Bayesian
analysis is the specification of the prior
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density function g(hi).  A secondary limita-
tion of the Littlewood / Verrall model is that  it
cannot estimate the number of faults
remaining in the software (the estimate may
be infinite depending on the v(i)  function).

6.2.4.5 Littlewood / Verrall Data
Requirements

The only required data is either:

l The time between failures, i.e. the Xi’s

l The time of the failure occurrences, i.e.
i

ti= Xic
j=l

6.2.4.6 Littlewood / Verrall
Applications

The Littlewoocl/  Verrall Model (or Inverse
Polynomial Model) is a conservative and
pessimistic model. It is applicable when the
operational profile is non-uniform and even
irregular, especially when the software
debuging process is imperfect (i.e., the fault
correction process tends to be incomplete or
error-prone), This model has the capability
of adjusting the parameters to reflect the
situation.

The major model applications are described
below. These are separate but related uses of
the model that, in total, comprise an
integrated reliability program.

l Forecasting: Forecasting future failures,
fault corrections, and related quantities
described in section 6.2.1.7.

l Control: Comparing forecast results with
pre-defined goals and flagging software
that fails to meet those goals.

l Assessment: Determining what action to
take for software that fails to meet goals
(e.g., intensify inspection, intensify
testing, redesign software, revise process).
The formulation of test strategies is also
part of assessment. Test strategy formula-
tion involved the determination of:  priority,

duration and completion date of testing,
allocation of personnel, and allocation of
computer resources to testing.

6.2.4.7 Reliability Forecasts

Estimation of reliability and other associated
terms is via substitution of the parameter
estimates into appropriate expressions. An
estimate of the Mean Time To Failure,
(MTIF), is:

The expression for failure rate is:

A
i(t)  = (t+;(i))

(Note that the failure rate expression is a
continuously decreasing function during
periods of failure-free working, representing
the greater confidence that comes from such
evidence)

The reliability function is:

R(t) = P(Ti > t) = $i)‘[t + G(i)]-&

In all of the above expressions, G(i)  and 8
are the estimates of the two respective pa-
rameters from section 6.2.4.3.

For other quantities that can be estimated, see
the references listed in paragraph 6.2.4.8.

6.2.4.8 Littlewood / Verrall
Implementation Status and Reference
Applications

The model has been implemented as part of
the SMERFS. It can be run on any computer
system with a FORTRAN compiler and is
available upon request.

This model has also been implemented in the
Software Reliability Modeling Programs
(SRMP) at the Center for Software Reliability
in London, England by Dr. Littlewood and
his associates of Reliability and Statistical

3 1
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Consultants, Ltd. This program package
runs in a PC environment.

The Littlewood/Verrall  model has been ap-
plied widely. See the following for examples
of applications:

l  K. Kanoun,  J .  Sabour in ,  (1987),
“Software Dependability of a Telephone
Switching System,” Proceedings 17th
IEEE Symposium on Fault-Tolerant Com-
puting (FI’CS-17),  Pittsburgh, PA.

increasing the forecasting accuracy of
software reliability modeling, there is not
sufficient evidence to classify them as
recommended practice at this time. They are
included here to indicate some of the current
avenues of investigation. Further experience
with these methods may lead to their being
classified as recommended practice in the
future.

7.0 SOFTWARE
RELIABILITY DATA

l Mellor, P., (1986),  “State of the Art Report
on Software Reliability,” Infotech, London

l Abdel-Ghaly, A. A., Chan, P. Y. and Lit-
tlewood, B., (1986),  “Evaluation of Com-
peting Software Reliability Predictions,”
IEEE Transactions of Software Engineer-
ing, SE-12 (9),  9X-967

6.3 Experimental Approaches

Several improvements to the software
reliability models described in the previous
sections have been recently proposed. First,
researchers at the City University of London
have devised a method of recalibrating the
models [BRGC92]  to reduce their biases (see
section 6.1.1.2). These findings to date
suggest that the recalibrated models yield
consistently more accurate forecasts than the
uncalibrated models. Second, work has also
been done in combining the results from two
or more models in a linear fashion to increase
predictive accuracy [LYU92,  LU92].  This
work suggests that such combinations yield
more accurate results than individual models.
The advantage of combining model results is
the simplicity with which the combinations
are formed - the models in the combination
are executed individually, with only the
results being combined. Third, efforts to in-
corporate software complexity metrics into
reliability models [KAFU87,  KHOS91],  and
to gauge the effects of different types of
testing (e.g., branch testing, data path
testing) on reliability growth [MATH92]  are
being investigated. Finally, the use of neural
networks for software reliability parameter
estimation is being investigated [KARU92].

A variety of applications for software relia-
bility measurement were described in Section
5 of this document. Section 6 provided a list
of selection criteria as well as a set of models
for estimating the reliability of the software
product. Data collection provides the
foundation on which both of these sections
depend. This section addresses (1) a
procedure for collecting data, (2) two data
types, (3) the relationships between the two
types, and (4) the AJAA data base hierachy.

7.1 Data Collection Procedure

The following nine steps can be used to es-
tablish a software reliability data collection
process:

l Step 1: Establish the objectives.

The first step in planning to collect data is to
determine the objectives of the data and what
data items will be collected. Data collection
does involve cost, so each item should be ex-
amined to see if the need is worth the cost.
This should be done in the context of the
planned application or applications of soft-
ware reliability engineering. If the item is
questionable, consider alternatives such as
approximating the item or collecting it at a
lower frequency. Look for possibilities of
collecting data items that can serve multiple
purposes. If this careful examination is not
performed, the unnecessary burden in effort
and cost on the project can result in the
degradation of all data or even the abandon-
ment of the effort.

l Step 2: Plan the data collection process.
Although these efforts show promise in
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It is recommended that all parties (designers,
coders, testers, users, and key management)
participate in the planning effort. The data
collectors must be motivated if quality data is
to be collected. Present the goals of the data
collection effort. Relate it to their direct
personal benefit. This will insure that all
parties understand what is being done and the
impact it will have on their respective
organizations.

It is suggested that a first draft data collection
plan be presented as a starting point. The
plan should include topics such as:

l What data items will be gathered?

l Who will gather the data?

l How often will the data be reported?
l Formats for data reporting (e.g., electronic

spreadsheet, and paper forms)

l How is the data to be stored and processed?

l How will the collection process be
monitored to ensure integrity of the data?

Solicit identification of problems with the
plan and desired improvements. Elicit the
participation of the data collectors in the
solution of any problems. It will provide
them an opportunity to provide new ideas and
insight into the development process.
Support will be gained by having the parties
that will be affected as active participants.

Recording procedures should be carefully
considered to make them as simple as possi-
ble. Solicitation of data from project mem-
bers can reduce effort and make collection
more reliable.

For the failure count method, the data
collection interval should be selected to
correspond to the normal reporting interval of
the project from which data are being
collected (e.g., week, month) or an integral
multiple thereof. This will facilitate obtaining
data on the level of effort devoted to the
software under test (person-hours and
computer hours) which must be correlated
with the reliability data

l Step 3: Apply tools.

Availability of tools identified in the collec-
tion process must be considered. If the tools
are not commercially available then time
needs to be planned for their development.
Furthermore, the amount of automatic data
collection must be considered. To minimize
the impact on the project’s schedule, auto-
mated tools should be considered whenever
possible.

When decisions are being made to automate
the data collection process for either of the
two types of data one needs to weigh certain
factors. These include:

l Availability of the tool. Can it be pur-
chased or must it be developed?

l What is the cost involved in either the
purchase of the tool or its development?

l When wiIl the tool be available? If it must
be developed, will its development
schedule coincide with the planned use?

l What impact will the data collection process
have on the  development schedule?

l Can the tml handle adjustments that may be
needed? Can the adjustments be completed
in a timely manner?

l How much overhead (people and computer
time) will be needed to keep the data
collection process going?

Once the tool has been developed and imple-
mented, one needs to consider ways of en-
suring the right data are being gathered.
Flexibility also should be designed into the
tool, as data collection requirements may
change. Finally, one needs to make some
type of assessment of not only what the tool
saved in time and resources but also what the
data collection process gained. Records
could be kept of the number of faults detected
after the release of the software. This could
be compared with reliability estimates of
similar projects that did not employ this
methodology. Estimates of reduced mainte-
nance and fault correction time could be made
based upon the estimated current failure rate.
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For the tool itself, one could estimate the
amount of time and effort that would be ex-
pended if the data had been collected manu-
ally. These statistics could then yield cost
estimates which would be compared with the
procurement and implementation costs of the
automated tool. If the cost of the automated
tool is significantly higher, one certainly
would question the wisdom of developing the
tool. However, even if the costs come out
higher, consideration must be given to future
use of the tool. Once the tool has been
developed it may be easily adapted over many
software development efforts and could yield
significant savings.
l Step 4: Provide training.

made on a regular basis.

l Step 9:  Provide feedback.

This should be done as early as possible
during the data collection. It is especially
important to do so at the end. Those who
were involved want to hear what impact their
efforts had. If no feedback is given, you’ll
find yourself facing the problem alluded to in
the beginning of this section. Namely, the
parties will resist further future efforts
because they see no purpose. Again, why
collect data for the sake of collecting it?

7.2 Failure Count Data vs Execution
Time Data

Once the tools and plans are in place, training
of all concerned parties is important. The
data collectors need to understand the pur-
pose of the measurements and know explic-
itly what data are to bc gathered.

l Step 5: Perform trial run.

A trial run of the data plan should be made to
resolve any problems or misconceptions
about the plan. This can save vast amount of
time and effort when the “real thing” occurs.

It is generally accepted that execution (CPU)
time is superior to calendar time for software
reliability measurement and modeling. If ex-
ecution time is not readily available, approx-
imations such as clock time, weighted clock
time, or units that arc naturals to the applica-
tions, such as transactions, may be used
[MUSA87,  pp 1564581.

l Step 6: Implement the plan.

The following paragraphs address failure-
count and execution time data collection to
support the recommended models identified
in Section 6.

Data must be collected and reviewed
promptly. If this is not done, quality will
suffer. Generate reports to show project
members; they can often spot unlikely results
and thus identify problems. Problems should
be resolved quickly before the information
required to resolve them disappears.

7.2.1 Failure-Count Data

l Step 7: Monitor data collection.

Monitor the process as it proceeds to insure
the objectives are met and the program is
meeting its established reliability goals.

l Step  8: Use the data.

Since the recommended models employ the
number of failures detected per unit of time,
these data are usually readily available. Most
organizations have some type of configura-
tion management process in place. As part of
this process, a procedure for reporting fail-
ures and approving changes to the software is
in place. The software problem reporting
mechanism may be either manual or auto-
matic. In addition, the problem reports may
be stored within a computer data base system
or a manual filing system The key is that the
data  can be easily extracted

Don’t wait to the end after the software has Make sum  that the problems are really soft-
been released to the users to make your reli- ware problems - some organizations use
ability assessments. Estimating software re- problem reporting for any type of anomaly
liability at regular, frequent intervals will and the time recorded on a problem report
maximize visibility into the development ef- may not be the time at which the failure was
fort, permitting managerial decisions to be experienced, it may be the time in which the
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report was filled out.

Another pitfall to avoid when using problem
reporting data involves forming the time in-
tervals. Remember, the purpose is to model
the number of failures detected per unit of
time within a specified environment. These
units should therefore be consistent in dura-
tion, manpower, and testing intensity.

Usually the information to check this is not
available. All one has is data on the number
of failures detected in one period or another.
However, there may have been twice as
many testing personnel in one period than the
other. The only way to find  out this infor-
mation is to seek it out. This may involve
talking with the testers or even reviewing old
time sheets covering the period of interest.
Generally, the longer the period of time in
which the fault counts are formed the more
smoothing occurs. Variations within short
intervals of time will be averaged out over the
longer time units.

Data may be gathered at any point within the
development cycle beginning with the system
test phase. Overall measurement objectives
will help you determine the rate (failures
reported per week, per month, or per quarter)
at which data is collected. It is suggested that
you start out using the number of failures
reported over the shortest unit of time
consistent with your objectives. If good fits
are not achieved, combine intervals to the
next level. For example: days to weeks, or
weeks to quarters. The smoothing effect
mentioned in the previous paragraph may
help in the modeling process.

7.2.2 Execution Time Data

This data may be collected directly or indi-
rectly. Also, it is best to collect, when feasi-
ble, the actual execution time of a program
rather than the amount of wall clock time or
system active time expended. This is the ac-
tual amount of time spent by the processor in
executing the instructions. Execution time
gives a truer picture of the stress placed on
the software. You could have large amounts
of time expended on the clock but very little
computations may have to be done during
this period. This yields small execution

ANSIjAIAA  R-013-1992

times. This would tend to give overly opti-
mistic views of the reliability of the software.
Modeling using execution time data tends to
give superior results than simple elapsed wall
clock time or system active time. However,
the data may be difficult to collect since a
monitor of the actual operating system is
involved. Another source for obtaining this
data is to adjust the wall clock time by a
factor that represents the average computer
utilization per unit of wall clock time.

If the time-between failures (wall clock or ex-
ecution time) is unavailable and only grouped
data (number of failures occurring per unit of
time) is available, the time-between-failures
can still be obtained One way is to randomly
allocate the failures over the length of the time
interval. Randomization will not cause errors
in estimation for some of the models by more
than 15 percent [MUSA87,  pg.1281).  A
second way is the easiest to implement.
Simply allocate the failures uniformly over
the interval length. For example, suppose the
interval is three hours in duration and three
failures occurred during this period. We
could then treat the time-between-failures to
be each one hour in length.

Two additional considerations are: (1)
adjusting the failure times to reflect an
evolving program and (2) handling multiple
sites / versions of the software. In the first
situation, the failure intensity may be under-
estimated in the early stages of the program’s
development yielding overly optimistic views
of the reliability. For the second considera-
tion, there are multiple versions of the code
being executed at different locations. In
[MUSA87,  pp. 162-1761  both considerations
are addressed.

7.3 Transformations Between the
Two Types of Input

Programs may have the capability to estimate
model parameters from either failure-count or
time-between-failures data, as maximum
likelihood estimation can be applied to both.
However, if a program accommodates only
one type of data, it is easy to transform to the
other type.

If the expected input is failure-count data, it

3 5
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may be obtained by transforming time-
between-failures data to cumulative time data
and then simply counting the cumulative
times that occur within a specified time
period.

If the expected input is tune-between-failures
data, convert the failure-count data by ran-
domly selecting a number of cumulative fail-
ure times in the period equal to the count and
then finding the time differences between
them [MUSA87,  pp. 143-1461.

7.4 The AIAA Repository

The AIAA sponsored the development of a
software reliability project repository. This
repository contains data for both researchers
and practioners  alike.

7.4.1 Minimum Data Required

The following information represents a mini-
mum subset of data that should be collected
for any software project. It will be found
useful in developing and maintaining local
organization repositories as well.

I. Project Data

The data should contain information to iden-
tify and characterize each system and effort
that generates data stored in the database.
Project data should allow users to categorize
projects based on application type, develop-
ment methodology and environment, scale,
required reliability or currency. The follow-
ing project-related data are suggested:.

l The name of each life-cycle activity (e.g.,
requirements definition, design, code, test,
operations)

l The start and end date for each life-cycle
activity

l The effort spent (in staff months) during
each life-cycle activity’

l Characterize the development environment

l primarily required  of rk?source mudeling.

3 6

(organic, semi-detached, or embedded2

II. Component Data

For each system component (e.g., subsys-
tem, element, or module) provide the follow-
ing:

l Software size in terms of executable source
lines of code as well as the number of
comments and the total number of object
insmctions

l The source language used

III. Dynamic Failure Data

For each failure recorded the following
infixmarion  should be track&

l The activity being performed when the
problem was detected (e.g., testing,
operations, and maintenance)

l The date and time of the failure

l The severity of the failure (e.g., critical,
major, minor)

And at least one of the following data items:

l The number of CPU hours since the last
failule

l The number of runs or test cases executed
since the last failure

l The number of wall clock hours since the
last faihlre

l The number of test hours per test interval
and number of failures detected in the
interval

l Test labor hours since the last failure

IV. Fault Correction Data

For each failure  corrected with a software fix,
the following information should be
recorded:

2 as referenced in the COCOMO
framewo~k[BoEH813
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l The date and time the fix  was available l The number of different organizations
developing software for the project

l The labor hours required for correction

Also record at least one of the following data
items consistent with the selected data item
from the dynamic failure data list.

l The Software Engineering Institute (SEI)
index of the development environment and
the assessment method

l The CPU hours required for the fix
l The most important tool and model used for

software reliability estimation

l The number of runs required to make the II. Component Data

l The wall clock hours used to make the
l The name and model of the development

and target hardware
correction

Finally, it is important to maintain corporate
knowledge of the software testing and de-
bugging effort. Therefore, have a point of
contact who knows the project write down
the lessons learned and have that person
available to answer questions concerning the
data (how they were obtained and how some
of the project specific terminology translates
to the current terminology).

l Average and peak computer resource
utilization (e.g., CPU busy, memory
utilization, and input / output channel
utilization)

III. Dynamic Failure Data

l The type of the failure (e.g., interface,
synw

7.4.2 Input for Practitioners l The method of fault / failure detection (e.g.,
inspection, system abort, invalid output)

The above data are for use by practitioners
who are interested in finding projects similar
to their own projects. It also provides a
guideline for defining data collection re-
quirements when new projects are started.

l The unit complexity (e.g., McCabe
Cyclomatic) and size where the fault was
detected

IV. Fault Correction Data
7.4.3 Input for Researchers

In addition to the minimum data mentioned in
Section 7.4.1, the AIAA Repository also
contains data for research studies in software
reliability measurement. These data items
include:

l The type of fix (e.g., software change,
documentation change, requirements
change, no change)
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APPENDIX A

ADDITIONAL SOFTWARE
RELIABILITY

l The cumulative number of failures at any
time t, [N(t)], follows a Poisson
distribution with mean m(t). This mean
is taken to be of the form m(t) = htb.

ESTIMATION MODELS A. 1.3 Duane’s Model Structure

This appendix contains descriptions of
four additional models available to a
researcher or software reliability analyst
for use on projects, that were not
d i scussed  in  Sec t ion  6  o f  t he
recommended practice. These models
may be useful on projects where the
assumptions of the models recommended
in section six do not apply or the models
in section six do not closely fit the data.
It is recommended to use more than one
model in practice since the computation
time for the analysis of multiple models is
reasonable.

If * = E- is plotted on log-log paper a
t t

straight line-of the form Y = a +bX with a =
In h, b = b, and X = In(t) is obtained.

Maximum likelihood estimates are shown by
[CROW771  to be:

i n=Ttbn

A.1 Duane’s Model
6= n-l n

C14L  / G>
i=l

A. 1.1 Duane’s Model Objectives

This model assumes that we am dealing with
the times of failures occurrences. The
number of such occurrences considered per
unit of time is assumed to follow a
nonhomogenous Poisson process. This
model was originally proposed by J. T.
Duane who observed that the cumulative
failure rate when plotted against the total
testing time on log-log paper tended to follow
a straight line. This model has had some
success in its application [DUAN64].  It is
best applied later in the testing phase or
beyond. The cummulative  operation of
summing the total number of errors to date
tends to have a smoothing effect and hence
promotes the linear relation present in the
model.

where the ti’s  are the observed failure times
in either CPU time  or wall clock time and n is
the number of failures observed to date.

Least Squares estimates for a and b of the
straight line (see previous Structure section)
on log-log paper can be derived using
standard linear regression estimates.

A. 1.4 Duane’s Model Data
Requirements

The model requires the time of the failure
occurrences, i.e. ti,  i = 1, . . . . n.

A.2 Brooks and Motley’s IBM
Model

A. 1.2 Duane’s Model Assumptions

The specific assumptions are:

l The software is operated in a similar
operational profile as the anticipated
usage.

A .2.1 Brooks and Motley’s Model
Objectives

l The failure occurrences are independent.

This model attempts to account for the fact
that the software may be developed
incrementally so that all of the modules may
not be under test at the same time.
Additionally, the amount of the program
under test could require different expen-
ditures of resources (e.g., staff-hours or

4 1
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CPU-hours expended). This model was
designed to handle these situations and can
therefore be applied at either the system or
module level. For consistency with the other
models in this recommended practice, only
the system level model and parameter
estimates are presented here. See [FARR83]
for a general treatment of these model
variations.

A.2.2 Brooks and Motley’s Model
Assumptions

The number of faults detected in a given test
period i follows either a Poisson distribution
or a binomial distribution. Specifically the
assumptions are:

l The number of software faults detected
on each test occasion is proportional to
the number of faults at risk for detection
which is proportional to the remaining
number of faults.

l This proportionality factor or probability
(denoted as (I  for the binomial model and
$ for the Poisson) of detecting any fault
during a specified unit interval of testing
is constant over all test occasions and
independent of fault detection.

l The faults reintroduced in the correction
process are proportional to the number of
faults detected.

One consideration when using this model is
the second assumption of a constant fault
detection probability. If this probability is
changing drastically over time another of the
models considered in this document may be
more appropriate. The fluctuation in the  fault
detection probability can sometimes be seen
in the initial testing phase as the testers are
learning the system. The S-shaped model
discussed in the next section may be more
appropriate in this case.

A. 2.3 Brooks and Motley’s Model
Structure

Binomial Model

Suppose Ji is the index set of those modules
tested on occasion i, N is the total number of
faults in the software program at the
beginning of testing, wi is the weight
assigned to module j, q is the error detection
probability given in the second assumption
above and a is the probability of correcting a
fault in the software without introducing new
faults. Then the binomial model over the I~
test occasion (i = l,....,K)  can be shown to
be [BROO80]:

P(X = ni)=
iTi
(1n q”’ (I_ qi)Ri-ni

i

where

~ji  = the number of faults remaining and
subject to detection at the start of the
ith test occasion

=
U

WjN  - aNi-1.j
1

Wi

4i = [ 1 - (1 - q)Ki]  where Ki  is the system

test effort on the z* test occasion

= probability of fault detection in the ifh
test occasion

and

Ji
I+ = c llij

j

= total number of faults found in the ith
test occasion over the modules being
tested.

For the Binomial model the maximum
likelihood estimates of the parameters can be
shown to solve the following system of
equations:

4 2
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Poisson Model

Suppose Ji is the index set of those modules
tested on occasion i, N is the total number of
faults in the software program at the
beginning of testing, wi is the weight
assigned to module j, $ is the error detection
probability given in the second assumption
above for the Poisson and 01  is the probability
of correcting a fault in the software without
introducing new faults. Then the Poisson
model over the ifh  test occasion (i = l,...,K)
of length ti can be shown to be lFARR83]:

P(X = Iii)  = ( @>Ni  i ni e-~i~i

Iii!

where

Ni = the number of faults remaining and
subject to detection at the start of the
ith test occasion

= C( WjN - aNi-1.j >
Hi

fi = [l-(1-9)“]

= probability of fault detection in the i’h
test occasion where ti  is the total time
spent for the ifh  test occasion

and

l l i  = Nifi

= total expected number of faults

The maximum likelihood estimates for the
Poisson model parameters N, $ and a are
found as the solution of the following three
equations:

i=l \ j&li

For both the binomial model and the Poisson
it is best to f= the value for a (the probability
of correcting faults in the code without
introducing new ones), as the three simulta-
neous equations are extremely difficult to find
the solutions for. If a is fixed the three equa-
tions in both cases reduce to two equations
with the last equation in each set disappear-
ing. Brooks and Motley suggest choosing
values for a ranging from 0.85 to 1.00.

A.2.4 Brooks and Motley’s Model
Data Requirements

The data required to implement either of these
two model forms are:

l The length ti of the ilh  test occasion.

l The total number of faults, (ni),  found in
the ifh  test occasion over the modules
being tested.

l The modules under test during the i’h  test
occasion.

l The probability of correcting faults in the
code without introducing new ones, a.

4 3
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A.3 Yamada,  Ohba, and Osaki’s
S-shaped Reliability Growth
Model

P(Nt= n) = probability that the cumulative
number of faults up to time t,
Nt, is equal to n

A. 3.1 S-Shaped Reliability Growth
Model Objectives

= M(t)”  exp(-M(t))
n!

where n = 0, l,...
This model assumes that we are dealing with
the times of failures occurrences. The
number of such occurrences considered per
unit of time is assumed to follow a
nonhomogeneous Poisson process. This
model was proposed by Yamada,  Ohba, and
Osaki [YAMA83].  It is based upon Goel and
Okumoto’s Nonhomogeneous Poisson
Process (NHPP) [GGEL79].  The difference
is that the mean value function of the Poisson
process is s-shaped in nature to allow for a
learning curve effect. At the beginning of the
testing phase the fault detection rate is
relatively flat but then increases exponentially
as the testers become familiar with the
program Finally it levels off near the end of
testing as faults become more difficult to
uncover. This behavior is best fitted by an s-
shaped model;  hence the basis of their model.

M(t) = the mean value function for the
Poisson process

= a(1 - (1 + bt)e-ht) with both a, b
>O

with

and with initial conditions

M(0) = 0
M(m)  = a

MO
dt

= a&+-bt

The fault detection rate is therefore:

A, 3.2 S-Shaped Reliability Growth
Model Assumptions

The basic assumptions are:

Letting ni,  i = l,...,k be the cumulative
number of faults found up to time tl,  i =
1 ,..., k, the maximum likelihood estimates
for a and b are shown to satisfy the following
pair of equations.

l The software is operated in a similar
operational profile as the anticipated
usage.

l The failure occurrences are independent
and random

l The initial fault content is a random
variable.

l The time between failures (i - 1) and i
depends on the time to failure (i - 1).

and

- 2 -iit, _atke -

l Each time a failure occurs, the fault which
caused it is immediately removed, and no
other faults are introduced.

A. 3.3 S-Shaped Reliability Growth
Model Structure

This model does an excellent job in both
fitting and given set of data and for prediction
when this s-shaped phenomenon is observed.

The specific model is:
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A. 3.4 S-Shaped Reliability Growth
Model Data Requirements

The model requires the failure times ti,  i = 1,
. . . . k as input data.

A. 4 Jelinski / Moranda
Reliability Growth Model

A. 4.1 Jelinski / Moranda Model
Objectives

The basic idea behind this model is that
failure occurrence rate is proportional to the
number of faults remaining, the rate remains
constant between failure detections and the
rate is reduced by the same amount after each
fault is removed. The last idea means that the
correction of each fault has the same effect in
reducing the hazard rate of the program.

A.4.2 Jelinski / Moranda
Assumptions

The basic assumptions of the Jelinski-
Moranda Model are:

l The rate of failure detection is
proportional to the current fault content of
a program.

l All failures are equally likely to occur and
are independent of each other.

l Each failure is of the same order of
severity as any other failure.

l The failure rate remains constant over the
interval between failure occurrences.

l The software is operated in a similar
manner as the anticipated operational
usage.

l The faults are corrected instantaneously
without introduction of new faults.

A .4.3 Jelinski / Moranda Structure

Using these assumptions the hazard rate is
defined as:

z(t) = $[N - (i - l)]

where f is any point between the discovery of
the (i - 1)t.h failure and the ith failure. The
quantity $ is the proportionality constant
given in the first assumption. N is the total
number of faults initially in the program.
Hence if (i - 1) faults have been discovered
by time t, there are N - (i - 1) remaining
faults. The hazard rate is proportional to this
remaining number. As a fault is discovered
the hazard rate is reduced by the same
amount, 0,  each time.

If Xi = ti  - ti-1,  i.e. the time between the
discovery of the ith and the (i - 1)st  fault for
i= l,...,n where to = 0; using the fourth
assumption, the Xi’s are assumed to have an
exponential distribution with rate Z(ti>.  That
is:

f(Xi)  = f[N - (i - l)]exp(-f[N - (i - l)]Xi)

This leads to the maximum likelihood
estimates of 4 and N as the solutions to the
following two equations:

& n

i+ $Xi
t 1

-k(i-1)Xi
i=l i=l

n

c
1 n

i=l fi - (i - 1) =
r;r-+ i(  1i - l  Xi

c xi
t 1i=l

i=l

A.4.4 Jelinski / Moranda Data
Requirements

The model may use either of the following
items as input data for the parameter
estimation:

l The time between failure occurrences,
i.e., the Xi’s*

l The total duration of the failure
i

occurrences, i.e. ti = c Xj
j=l
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APPENDIX B

AUTOMATED SOFTWARE
RELIABILITY
MEASUREMENT TOOLS

This appendix provides a list of the known
software reliability measurement tools
available to practitioners and researchers. It
is summarized from an AIAA special report,
An Evaluation of Tools for Modeling Soft-
ware Reliability, and contains only those
tools with survey information available at the
time of publication. It should be noted that
additional tools are arriving on the market and
these tables represent the status as of this
printing.
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Supplier and Naval Surface  Warfare Reliability and Statis- Data & Analysis Center
contact Center (NSWC/DD) tical  Consultants, Ltd for Software (DACS)

Dr. Willii  Farr Dr. Bev Littlewood DACS
NSWCDD Center for Software RDDDED
Dahlgren,  VA Reliability Griffiss  AFB, NY

22448-5000 Northampton Sq. London 13441
(703) 663-4719 EC1 VOHB.  England (315) 336-0937

(+I4  71 477 8420)
(+44  71 477 8585) FAX

Tool Name Statistical Modeling  and Software Reliability CmL
Estimation of Reliability Modeling Programs
Functions for Software (SWP)
(SMERFS)

Models Littlewood/Verrall Musa/Okumoto Goel/Okumoto
Musa Basic
Musa/Olcm-~otu JeliikijMoranda  (TM)
Geometric GoeUOkumoto
Execution ‘Die NHPP Bayesian JM
Generalized Poisson Littlewood/Verrall

Littlewood
Brooks/Motley Keiller/Littlewood
Schneidewind Littlewood NHPP
S-Shaped

Hardware Cyber 170/760,  DEC Sun Microsystem Worlc- JBMPC
VAX, IBM PC (some station or IBM PC com-
versions require a math patible with a math
coprocessor) coprocessor

Minimum DEC VMS, MS DOS 3.0, MS DOS 3.0 MS DOS 2.11
Operating Cyber  Operating System
System
Minimum 256K 5OOK 256K
Memory

Release Data
Release Date

itructure Driven
Integrated
System
Stand Alone
Tool

4 8
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Supplier and
Contact

Tool Name

Models

Hardware

Minimum
Operating
System
Minimum
Memory
Requirements
Current
Version
Current
Version
Released
Origlnal
Version
Released
Distributed
copies
Developmenl
Language
Commercial
Use
Project
Specific Use
Menu-Driven
Command-
Driven
Integrated
System
Standalone
Tool

C o s t  6)

AT&T Bell Laboratories AT&T Bell Laboratories

Dr. William Everett AT&T
Bell L&oratories Rm 2L-
503
Crawfords Corner Road
Holmdel. NJ 07733~(908)
949 2334

Dr. William Everett AT&T
Bell Laboratories Rm 2L-
503
Crawfords  Come-r Road
Hohndel, NJ 07733-(908)
949 2334

Program for Software
Reliability and System
Test Schedule Estimation
Musa Basic
MusaJOkumoto
CDC  6000/7000, IBM
360/370,  DEC VAX,
Univac 1100. Honeywell
6000

Unknown

RBLTOOLS  (a PC-based
version called SRE tools
is currently in beta test)
Musa Basic
Musa/Okumoto
Any platform running
UNIX  system V operating
system (IBM PC for SRE
t o o l s )

See above

1OOK 1OOK

1.0 2.0

1977 1988

1977 Sept-87

>lOO 13

KIRTRAN FORTRAN 77

X

X

X

Public Domain

X

X

X

$300

Software Quality Tools

Thomas L. Wilson
Software Quality Tools
2000 West Park Drive
Suite 200
Westborough, MA

01581
(508) 366-5045
Software Quality
Management System
(SQMS)
Musa Basic

Sun  SPARC station

sun OS 4.1,operl
wiidows  2.0

8 Meg

1.2

Mar-91

Ott-90

>lO

C

X
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SupplIer a n d AT&T Bell Laboratories CEP-Systemes MBB
Contact Deutsche Aerospace

Munich
Dr. William  Everett AT&T Mr. Sylvain  Metge CEP- Mr. R. Borcz
Bell Laboratories Rm 2L- Systemes MBB Deutsche Aerosp.
503 150 me Vauquelin space comm.  & Propul.
Crawfords Comer Road hnmeuble  Europolis Bat. System Div. Mail Code
Hohndel. NJ 07733 (908) A KQ114
949 2334 31081 Toulouse Cedex D8000 Munich 80

France Germany

Tool Name SRE Toolkit SoRel SOFrREl

Models

Hardware

Musa Basic
MusalOkumoto
Any platform running
Unix System V or
MS/DOS

4 models iinplemented Shooman

Macintosh II with a math IBM PC
coprocessor

Release Data

Commercial X (all documentation in

AIAA R-013 =I2  D Ob9553q OOOOb84 54L m
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APPENDIX C

DETERMINING SYSTEM
RELIABILITY

Reliability analysis involves approximations,
assumptions, and often the use of generic
rather than field specific data. Thus,
estimates are often off by a factor of 1.5 or 2.
For example, suppose that the system
requirements call for a hardware MlTF of
1,000 hours and a software M’ITF of 1,000
hours (yielding a system MTTF of 500
hours). Conservative design procedures
would be to design for 2,000 hours MTI’F
for both the hardware and software, so that
even if reality is worse than the model
assumptions, there is a built in safety factor
of 100%. Thus, neither hardware nor
software models need give exact predictions
to be important analysis techniques.
[SHOO90a].

This appendix describes methods for
combining hardware and software reliability
predictions into a system prediction.

C. 1 Predict Reliability for
Systems Composed of
(Hardware and Software)
Subsystems

A simple way of dealing with the reliability of
a system composed of hardware and software
is to make a structural model for the system.
The most common types of structural models
in use are reliability block diagrams
(reliability graphs) and reliability fault trees.

n n

51
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If the hardware and software modes of failure
are independent, then the system reliability,
Rs, can be treated as the product of the
hardware and software reliability, and a
separate model can be made for the hardware
and software. Consider the following
example:

A railroad boxcar will be automatically
identified by scanning its serial number
(written in bar code form) as the car rolls past
a major station on a railroad system.
Software compares the number read with a
data base for match, no match, or partial
match. A simplified hardware graph for the
system is given in Figure C.l, and the
hardware reliability, R(HW), in Equation
(C.  1).

R(HW)=RS*RC*RD*RP Cl)

The software graph is shown in Figure C.2,
the software reliability, R(SW),  in Equation
(C.2),  and combining these equations, the
system reliability R(SYSTEM) is given in
(C.3).

R(SW)=RF*RL*RD*RA cc.3

R(SYSTEM) = R(HW)  * R(SW) (C.3)

In a more complex case the hardware and
software are not independent and a more
complex model is needed. For example
consider a fault tolerant computer system
with the computers, Cl, C2, C3, the same
software on each computer (SWl, SW2,
SW3),  and an output majority voter (answer
is the majority output) [SHOO90],  Appendix
H]. Since the software [SW] is the same

d i s k  -
storage printer

Figure C. 1 The Hardware Model of a Railroad Boxcar Identification System

scanner -.  database -.  data
decoding look-up storage

- comparison -,  printer
algorithm driver

Figure C.2 The Software Model of a Railroad Boxcar Identification System
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c 2 - SW2”
voting - common

algorithm software

I
c 3 - SW3”

2

Figure C.3 A Reliability Graph for a Fault Tolerant Computer System

Note that such models work best at a high level where there will be a
modest number of subsystems.

most of the failures [say 90%]  due to design
faults, errors in specification, etc. are com-
mon to all processors and appear in series in
a graph model. Since the computers do not
have the same internal state, say 10% of the
software failures (SW”) are independent as is
shown in Figure C.3 and the reliability
equation, Equation (C.4),  is written in terms
of the subsystem probabilities, Pr.

R = Pr [(Cl * SWl” + C2 * SW2”
+ c3 SW3”)  * v * SW’] (C.4)

The hardware reliabilities for such system
models are derived from  test and operational
data on the number of equipment failures for
each subsystem and the total number of hours
of test. Similarly one would take data on
system failures traceable to the software,
however, one would need to count these
failures as system level failures to use these
models. This is the reason why such models
can not be applied at too low a level.

More detailed micro models have been
formulated and described in the literature,
however while they appear theoretically
sound, unlike the macro models previously
described, they have not been applied to
actual projects as yet. These micro models
which have been developed [SHOO76,
LLOY77, LITT79,  LAPR84, HECH89]
focus on a simple representation of the

5 2

software structure. As an example consider
the following model based on representing
the software by a structure with i major paths
[SHOO83,  FREES&  SHOO90bJ

During operation (execution) of the software,
each of these paths is selected with frequency
fi,  and the execution time of each case is ti.
There is a certain probability that in executing
case i, a residual software error will be
encountered which results in system failure.
This failure probability is denoted by ch.

Development of the model [(SH0076,
SHOO83) pp. 378-3841  leads to an
expression for the system failure rate which
depends on the fi,  ti,  and q parameters:

i

c fjclj

Z(0) = i 'l
zfj(l-$)tj
j=l

cv

Note that the symbol for executed time of
path i has been given a prime, t;, to dif-
ferentiate it from  the system operating time t.

If the qi values are small, as they may be in
most cases, then Equation (C.5)  simplifies to:
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i

c fjrlj_  _
z(0) = +-

c fjij

j=l

(C.6)

We can interpret Eq. (C.6) in a simple
fashion. The failure rate z(0) is just the ratio
of the weighted failure probabilities and the
weighted running times (to failure or
success), yielding failures per hour.

Note that the failure rate function z(0)  in
Equation (C.6) is independent of operating
time t. Thus, substituting z(0)  into the
standard reliability expression [SHOO9Oa],
yields:

R(t) = exp[l-z(O)dx] = exp(-z(O)t)  (C.7)
0

The mean time to failure, MTI’P,  is given by:

M’ITP = ja(t)dt
0

(C.8)

Since z(0) is independent oft, substitution of
(C.7) into (C.8)  yields

1
MITP=-

z(O)
(C.9)

C .2 Predict Reliability in the
Engineering Phase

C .2.1 Software System

Software reliability prediction in engineering
phase is basically the same as measuring the
software reliability in testing and operational
phase. Since during the engineering phase,
the software is only considered as part of the
whole system (usually represented by a few
blocks in the overall system block diagram),
software reliability usually affects system
reliability partially. However, in the case
where software is involved in the operation
of a critical section of the system, reliability
of that software portion will have immediate

impact on the system reliability. Therefore,
it is important to separate the reliability
prediction for critical software portions from
that for noncritical portions.

Another important issue of predicting
software reliability in the engineering phase is
to correctly identify the expected operational
profile, especially when the functionality of
the software depends on certain assumptions
made by the hardware, and made by the
interfaces in between hardware and software.
There might be some discrepancies which
will not be caught by the software integration
testing, and would have to be resolved in the
system engineering phase.

C.2.2 Systems Composed of
Hardware and Software Subsystems

In concept this is essentially the same task as
that discussed in Section 5 for the Test and
Operational Phases; however, during the
System Engineering Phase, we do not have
operational or test data for our current pro-
ject. We must rely on historic data recorded
in raw form or distilled into a reliability
estimate for the hardware and software within
the system. In the past the field of hardware
reliability has been quite successful in
collecting, analyzing, and recording field
failure data for failure rate estimates of
various component reliabilities. (The two
best known hardware reliability manuals are
[MIL-HDBK-217E]  and [NPRD85]).

Such values are generally used for estimating
the reliability of new hardware locating
similar components or equipments in the
historical data base. One of the objectives of
this AIAA project is to evolve such a data
base.

In the interim and even after such a data base
is established, one will often need to scale
historical data to adjust for more logical and
thorough development procedures. The
following technique can be helpful in this
regard [SHOO9Ob].

One is often faced with the task of making
software reliability predictions at the time a
proposal is being prepared to respond to a
request for proposal (RPP).

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:28:13 Information Handling Services, 1999



AIAA  R-013  92 m Ob95534  OOOOb88  197  m

ANSI/ALU  R-013-1992

This terminology comes from the procedures
used in government contracting; however,
there are direct analogies in commercial
contracting and perhaps less formally (but
maybe they should be more formal?) for in
house projects. Strictly speaking, one can
not estimate the reliability of software which
he or she knows nothing about, but a proper
RFP will contain enough information so that
the designer can liken the proposed project to
a previous one. If the parallel is very close,
then the only problem is to find appropriate
reliability data on the previous project. More
commonly, there are differences among the
two projects and one must devise a technique
for mapping or extrapolating the data. The
following method and example is one which
can be used in such circumstances.

Call the new project to be predicted ‘Project
A” and the prior project “Project Z.” The
number of hours of testing during four
phases of Project Z was available: (1) prior
to site integration: 2,000 hours, (2)
integration at site: 4,320 hours, (3) reliability
demonstration test: 700 hours, and (4) field

operation: 6,000 hours. The corresponding
estimates of the number of errors removed
during these four phases were; 900,800,14,
and 33. Thus, we can calculate a failure rate
over each of these four intervals of time by
dividing the number of errors removed by the
number of test hours.

It was postulated that this data would fit an
exponentially decreasing failure rate model,
and to test this hypothesis, the failure rates
were plotted versus cumulative test hours on
semi-log paper. The results are shown as the
four horizontal bars in the accompanying
figure, and the data points are shown at the
center of the intervals. The solid line in
Figure C.4 is fitted by eye and shows fairly
good confirmation of the exponential
assumption. If the new project is to be very
much like the previous one the solid line can
be used to estimate how reliability can be
traded off versus test time in Project A.

More than likely, Project A will differ from
Project Z, and in the example given, the
requirements were that Project A be

Failure Rate
per 1000 Hours

lOCUI0

\
0.1 \

0 2 4 6 8 10 12 1 4

Hours of Testing (in thousands)

Figure C.4 Prediction of Project Reliability during Proposal Phase
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much more reliable than Project Z. Project Z
did not have strong software reliability and
quality control focus, plan, estimation or
tracking procedures (in other words, it was a
normal project). The dotted line in Figure
C.4 was proposed as what might be achieved
if Project A had a strong reliability focus and
reliability tracking. It was based on the
following assumptions:

a. A strong qualitative and quantitative
reliability plan could deliver software to the
integration phase with only 20% as many
errors as Project Z.

b. The errors in Project A will decline at the
same rate as those did in Project Z, (even
though there are fewer errors present).

Of course a complete proposal would have to
include a detailed description of the reliability
and quality control procedures to be used and
whether the expected reductions in failure rate
could meet the “goals of the estimate.” Also,
one would clearly feel much better about such
an estimate if in addition to Project Z there
were data on prior projects W, X, and Y as
well and the results and circumstances of
these projects corroborated the estimate.

ANSI/AMA R-013-1992

C.3 Select Reliability Objective

Although we are considering selection of a
reliability objective here as an application in
itself, it is often part of another application.
In the latter case, it is part of the step of
parameter determination.

There are at least three principal methods
used in establishing a failure intensity
objective for the software component of a
system: system balance, release date, and life
cycle cost minimization [STAR92].  Further
discussion of these methods is given in
[MIJSA87,  pp 194-1971.

C.4 Predict Reliability of Different
Designs (Architecture)

The models given in Section C.l allow one to
explore the results of a change in architecture,
by examining the effect of structure on the
reliability expression. One can formulate the
model of the two (or more) candidate
software architectures, and see how the
changes effect the software reliability.
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APPENDIX D

RESEARCH OPPORTUNITIES

This appendix will discuss some of the
known open research problems. It is not
intended to be an exhaustive list of such
problems.

D. 1 Improving Parameter Estimation

Maximum likelihood estimation of parameters
based on failure data taken during execution
yields reasonable results, but there appears to
be considerable room for improvement.
Estimates are frequently biased and there is
frequently considerable dispersion as well.

Joe and Reid studied the problem for an
exponential binomial model (similar to but
not precisely the same as the exponential
Poisson model described in this document)
[JOE85].  Littlewood investigated the use of
adaptive prediction to compensate for
estimation deficiencies [LITT86]. Further
investigation into new methods of estimation
may be fruitful. Modification of estimators
based on measures of prediction error, an
adaptation of the Littlewood approach, could
be a useful approach.

This research will require failure data to be
supplied through the National Repository. It
will also require software reliability engi-
neering programs in which different estima-
tion procedures can easily be slipped in and
out in modular fashion.

Further research is needed to address other
possible factors and to verify the consistency
of influence of the factors over a larger group
of projects. The data required here includes
number of faults identified during the life of
the software, size of the software in delivered
executable source lines, and measures of
those factors that are likely to influence fault
density. Data is needed over a wide variety of
projects. The programs required are expected
to be standard statistical packages.

D .3 Fault Exposure Ratio

The fault exposure ratio [MUSA87]  is the
ratio of the initial failure intensity at the start
of system test to the product of the linear
execution frequency and the number of
inherent faults. The linear execution
frequency is the average instruction execution
rate divided by the object program size. It
relates reliability to fault density.

Fault exposure ratio may be constant or close
to it. This must be verified over a larger
sample of projects. If it is not constant, then
the factors that influence it need to be
identified and the relationships determined.

This research requires data from a variety of
projects on initial failure intensity at the start
of system test, number of faults, average
instruction execution rate, and object program
size. It may also require information on
factors that could influence the fault exposure
ratio. There is no particular need for software
tools.

D.4 Fault Reduction Factor
D.2 Fault Density Prediction

Accurate means of predicting fault density are
needed if we are to predict the parameters of
the exponential model so that it can be used
prior to program execution. At the present
time, investigators have identified some of
the factors that appear to affect fault density,
based on a moderate number of projects.
[TAKA85]  found that specification change
activity, average programmer skill, and
thoroughness of design documentation are
significant. They account for about 60% of
the variation in fault density, so there are
clearly other factors that are operative.

The fault reduction factor [MUSA87]  is the
ratio of net fault reduction to failures
experienced as time of execution approaches
infinity. We need to determine its value over
a wide variety of projects and determine
factors (if any) that affect it.

The main research requirement is data on net
faults removed and failures experienced. If
factors that affect fault reduction factor are
identified, we need to determine their values.
There is no need for software tools.
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D .5 Resource Usage Parameters

Information on resource usage parameters is
needed on a wide variety of projects. Either
they will be constant, or they will vary with
factors which must be determined.

The requirements for research here are data
on resource usage (failure identification
effort, failure resolution effort, computer
time) as a function of execution time and
failures experienced. Data will also be
required on the values of any variables that
may affect resource usage. The program tools
required will probably only be standard
regression routines.

D.6 SRE and Unit Test

There is a good chance that software
reliability estimation could be extended to unit
test. There are two problems that must be
addressed. First, the size of the sample of
failures may be solved in grouping the
failures of a number of units in some way.
Second, the operational profile for the unit
must be related to the system operational
profile in some way or one must compensate
for the difference.

The data and software tools needed for this
study are not presently defined; they must be
determined in the course of the study.

D .7 Homogeneity of Failure Severity
Classification

Some evidence indicates that the proportion
of failures in each failure classification on a
given project remains approximately constant
over the life of the project.

Checking this hypothesis will require failure
data from a variety of projects, with the
execution time and severity classification of
failure recorded.

D .8 Relationship Between Reliability
and Problems Found During
Inspection

If the inspection process happens during the
coding phase of the life cycle (ex. code
audits) the program is too unstable to fit a
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reliability model as formulated in this
document. These models attempt to fit the
fault discovery process within a given
environment. If the environment is rapidly
changing, as would be the case during the
coding phase, attempting to do reliability
prediction is like trying to hit a rapidly
moving target. It is not impossible but it is
extremely difficult. If the code audit process
is relatively stable, say over a short period of
time or perhaps within a given module of the
program, we might be able to fit and
subsequently use our model predictions.
However they would only be appropriate in a
very restrictive sense. Usually the code is
undergoing such rapid changes that what we
attempt to model today is not the same
program tomorrow!

Reliability estimation and prediction during
the coding phase or earlier is an open
research question. Some suggestions can
however be put forth. All of these
suggestions will not guarantee good results if
followed. These are only recommendations
based upon the experience of software
developers. The first suggestion is to use past
data of similar projects. One might compare
the fault detection rates during the inspection
process of the two similar efforts and then
using the operational reliability of the past
effort adjust it for the given effort. This
could provide a very crude estimate of the
eventual reliability of the current program.

Again extreme care needs to be exercised in
extrapolating from one effort to another.
Two development efforts may be similar (ex.
number of lines of code, personnel,
language, or intended use), however you will
never have an identical development
environment.

Another suggestion is to employ some of the
measurements provided during the coding
phase in the IEEE Standard Dictionary of
Measures to Produce Reliable Software
(IEEE Std 982.1-1988) and the
accompanying IEEE Guide for the Use of
IEEE Standard Dictionary of Measures to
Produce Reliable Software (IEEE Std 982.2-
1988). That effort attempted to define
metrics that can be used throughout the
software life cycle to measure both the
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resulting product
that developed it.

and the software process
Here the emphasis is on

insuring that the effort stays on track towards
its reliability goals so that when it reaches
integrated testing or beyond the software
models related in this document will confirm
that the reliability objectives have been meet.
[SIEF89]  provides a basis for choosing the
appropriate measures for use. Some exam-
ples of metrics that can be employed during
the audit process are:

a. Fault-days - The number of days the fault
has resided in the code. This could
indicate problems in the process. Faults
are not being discovered earlier in the life
cycle when software impacts are not as
great.

b. Error Distribution - For the faults
discovered in the inspection process what
types of errors (requirements, design,
etc.) are they. This again could indicate
where management needs to address
changes in the software engineering
process.

c. Man-hours per major defect detected -
How much effort was expended in the
inspection process to uncover a given
fault. If this is too large (say in respect to
similar development processes) the audit
process may need to be modified.

The reader is encouraged to refer to those
documents for additional information.

If the inspection occurs during the integration
phase as part of the overall test strategy for
the verification and validation of the software
(V&V), the models considered in this docu-
ment can be applied, assuming the software
has by that time reached a relatively stable
state. However again care must be considered
in extrapolating the reliability predictions be-
yond this environment, especially to the op-
erational phase. Generally, when code audits
are performed, extensive coding reading is
done. The modules are inspected each in turn
with the same level of intensity. Hence
modules that would not be used very often in
the operational phase (or not even at all un-
less certain anomalies occur) are inspected at
the same level as ones that occur on a regular
basis. Thus faults are found at a rate that
would be higher than what would normally
occur within the operational phase. If this
were the case, smaller Mean Time Before
Failures (MTBF) would be predicted by the
models than what would be observed opera-
tionally. One only needs to be aware of this
danger. If one is modeling the inspection
fault detection rate simply to determine
whether more manpower need to be allocated
or what modules need to undergo more ex-
tensive testing, then this would be an appro-
priate use of the models.

It is hoped that further research will provide
better approaches for prediction and estima-
tion within this important phase.
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APPENDIX E

USING THE AIAA
RECOMMENDED PRACTICE
FOR SOFTWARE
RELIABILITY

Section 5 outlined an eleven step generic
procedure that can be tailored to a specific
project’s needs. The steps are as follows:

Developers, testers, and users decided to
define failure in terms of the activity that the
system would be performing (i.e.,
development, testing, or operations), and to
categorize the failures by their severities (i.e.,
critical, major, or minor). The meeting results
are shown in Table E.l.

Other considerations outlined in the AIAA
Recommended Practice related to failure
definition that require resolution are:

1 .

2.

i*
51

6.
7.

;*
10:
11.

Identify the application under
investigation
Specify the requirement
Allocate the requirement
Define faihrre
Characterize the operational
environment
Select tests
Select model(s)
collect data
Determine model parameters
Validate and select best model
Perform analysis

This document limits its scope to the period
from the start of testing until system release,
so while the frst  three steps are called out,
they are not expanded upon in Section 5.
Future research is intended to address them in
detail.

Section 5 identifies considerations for each
step in the procedure. The following section
outlines those considerations and describes
the actions taken during “Project A”. It
addresses each step of the generic procedure
beginning with step 4 - Define Failure.

E. 1 Define Failure

Section 2 of this recommended practice
defines failure as “The inability of a system
or system component to perform a required
function within specified limits.” Since this is
a general definition, it is recommended that a
project-specific definition be negotiated by
the testers, developers, and users prior to the
start of test.

Prior to testing the Project A software,
several meetings were held to define failure.

l Are failures counted if it is consciously
decided not to seek out and remove the
cause of a particular failure?

l Are duplicate failures counted each time
they occur?

l Is each failure in a series that is triggered by
data degradation counted individually?

Responses were no to the first question,
sometimes to the second, and yes to the third.
The rationale for answering no to the first
question was that deciding not to correct a
known fault is equivalent to changing a
system requirement. Duplicate failures that
were encountered using a similar test case, or
during regression testing were not counted;
however, if the duplicate failure was
encountered using a different operational
scenario the failure was counted. Answering
yes to the third question simplified data
collection since detailed investigation into
each failure was not required prior to using
the data for parameter estimation.

E.2 Characterize the
Operational Environment

The AIAA Recommended Practice defines the
operational environment in terms of the
system configuration, the system evolution
during test, and the system’s operational
profile. The system configuration refers to
the arrangement of the system’s components.
System evolution refers to changes in the
design and implementation during test and the
operational profile(s) refers to the relative
frequency that each function of the software
is executed. Each item must be considered
when planning and executing the software
reliability analysis.

6 1
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Minor
TestEClitic al

Minor

Operations
CIlhCd

A failure that inhibits processing in more than one area and cannot be
circumvented. Additionally, a failure that requires reboot of a workstation

1 to correct.
~ A failure that inhibits processing or produces erroneous output limited to
one area. Also, a failure that requires the operator to logoff then logon to
restore the operation.
Anomalies that are slight and can be circumvented.

Inhibits one or more applications from being tested or a failure that brings
the svstem to a halt and cannot be circumvented. Additionallv. a failure
that &q

.-
uires reboot of a workstation to correct.

Inhibits an entire processor of an application from being tested or prohibits
completion of a test case by blocking other test functions. Also, a failure
that requires the operator to logoff then logon to restore the operation.
Failures that do not directly affect completion of a test function and are
considered to have no effect in an operational environment.

A failure that drastically reduces the usefulness of the system in support of
current operations and cannot be circumvented. Additionally, a failure that
requires reboot of a workstation to correct.
A failure that reduces the usefulness of one or more major system
functions used in current operations, and cannot conveniently be
circumvented. Also, a failure that requires the operator to logoff then
logon to restore the operation.
Failures that occur during a mission that are considered to have no effect
or to be insignificant. bu;are to be corrected in a future release. I

Table E. 1 Failure Definitions Used During Project A

E .2.1  System Configuration independently?

Prior to the project, the system was a
basically centralized system. All processing
occurred in mainframe computers. The
processed data was sent to ground controllers
for interpretation. Project A incorporated
aspects of distributed computing into the
facility by adding a Local Area Network and
workstations at the users’ work areas. The
workstations contain software that allows the
user more analysis capability while
maintaining the capability from the original
system.

The distributed nature of Project A raised the
following two concerns for the analysis:

l Should the failure data be separated by
hardware processor and should the failure
rate of each component be tracked
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l How should the fact that different
processors execute at different rates and
are busy different amounts during a
mission be handled?

The Project A team decided that it was only
possible to track failures at the system level
and not at the component level (i.e., any
software component failure was a system
failure), thus it was not necessary for the
reliability analysis to separate the failures by
component. Clearly, this simplification
compromises the accuracy of the system
reliability estimate by ignoring the distributed
nature of the software components.
However, a reliability block diagram can be
constructed that would improve the accuracy
of the estimate by taking into account the
system architecture and functional paths.
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To handle the second issue Project A
collected system active test hours rather than
execution time on each processor. While
Section 5 recommends collecting processor
execution time for completing a software
reliability analysis. Unfortunately, it was not
possible to measure execution time explicitly
throughout the test  on each processor.  The
system active time was defined as the time the
system was processing mission simulated
data. It did not include downtime due to
failures, reconfigurations,  o r  o t h e r
anomalies. It does include the time the system
processors spend doing Input / Output and
waiting for data. It should be noted that
performance measurement prior to delivery
indicated that the host operates at slightly
over 80% CPU busy, and multiple
workstations are continuously executing
during a mission. Thus, system activity is an
approximation to execution time.

E.2.2 System Evolution

Software reliability measurement models
assume that the program is stable except for
those changes that result from debugging.
Project A evolved due to integration of parts
during the test period. Three major releases
were provided to the test team during the test
phase. The first major release contained
308,350 source lines of code (SLOC). The
second release contained an additional
486,802 SLOC for a 795,152 SLOC total.
The third release added 105,722 SLGC for a
total of 900,874 SLOC. Note that this
evolution was anticipated prior to testing and
all three releases contained relatively
independent functionality. Furthermore, the
system was stable for the final 450 active test
hours .

Section 5 does not provide significant detail
on how to handle this situation. It simply
provides a reference. The solution for Project
A was to make sure the tool they used had the
capability to adjust the failure times based on
the evolution of the project.

E .2.3 System Operational Profile

Software reliability measurement models
assume that the software is tested in a manner
similar to operational use. The term

ANSI/AIAA  R-013-1992

operational profile is used to describe the list
of all operations the system can perform and
the probability of occurrences of each
operation.

For Project A, recorded data from previous
missions and user training scenarios were
used to develop the test cases. This ensured a
relatively accurate operational profile for
testing.

E.3 Select Tests

Section 5 identifies two approaches to test
selection. First, select tests that duplicate the
operational environment of the system.
Second, select tests that are more severe than
the anticipated usage of the system. The
second approach is intended to accelerate the
test process by encountering more faults in
less elapsed time.

As stated previously, Project A tested using
actual data collected from previous missions.
Project A also conducted a separate “stress
test” of the system using simulated data that
executed the software well above design
limits.

E.4 Select Models

Section 6 defines a set of model selection
criteria and recommends four models as a
starting point for software reliability analysis.

Project A examined each of the recommended
models and determined that a special case of
the Generalized Exponential model was
practical for the situation. Project A experi-
mented with several models contained in the
Generalized Exponential Framework and
chose the Musa Basic Model based on its
goodness-of-fit and ability to handle
incremental releases during test.

The other three recommended models were
not practical for Project A. The fit obtained
using Musa / Okumoto logarithmic Poisson
model could not be validated. The
Schneidewind model requires equally spaced
execution intervals, which was not the case
for the project since system active time was
collected rather than execution or wall-clock
time. Finally the Littlewood / Verrall model
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implementation available to the project
required time between failure data as input
rather than the test interval lengths and counts
that were collected.

objectives.

Section 7 outlines a nine step data collection
procedure as follows:

E. 5 Collect Data

The data collection effort must be geared
toward the overall objectives of the software
reliability effort. The objective for Project A
was to forecast the failure rate of the software
at release, and to estimate the number of
software-related failures during a mission.
Section 7 recommends that data collection be
restricted to the data required for the specified

1) Establish the-objectives
2) Plan the data collection process
3) Apply tools
4) Provide training
5) Perform a trial run
6) Implement the plan
7) Monitor data collection
8) Use the data
9) Provide feedback

6 4

Datez
Scheduled Time (hrs):

Effective Tie (hrs):
Workstation:
Host:

Lost  Tie (hrs):
O p e r a t i o n s :
DSS: -
S i m u l a t i o n s :
other: w

Test Session Rating (check one):
Excellent - Good- F a i r -  P o o r -

Workstation Subsystems and Highlights:

Host Highlights:

I
Personnel:

Discrepancies Written:
Impact Number Written

ClitiCal
Major - -
Minor  --

Itemized DR Lit:
Number Impact Subsystem Description

---
---
-v-
-7-

Figure E. 1 Test Session Report Form
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It also defines data primitives that should be
collected for any software project. These
primitives support the AIAA software
reliability database and would be useful for a
repository supporting future planning.

To meet Project A objectives for reliability
analysis data on the number of system active
hours during each test interval, the size of the
software under test, and the number of
recorded failures by severity during the
interval were collected.

The study period consisted of 126 test
sessions. At the end of each test session, a
test session report form was completed by the
test monitor. A sample test session report
form is shown in Figure E. 1. In general, the
form required the test monitor to answer
several short questions; answers document
the impact of all observed failures and other
characteristics of the test session.

During each test session the individual testers
complete a form describing each failure oc-
currence. The form is called a discrepancy
report (DR).  A completed DR form contains
details of the test environment and the behav-
ior of the system when the failure occurred.
At the conclusion of each test session all DR
forms are delivered to the development
organization for investigation and resolution.

The quality of the test session data was
checked via independent inspection.
Occasionally, an anomaly or contradiction
arose through the inspection or subsequent
analysis. If the data reporting was inconsis-
tent across testers, the test monitor who filed
the report was interviewed for clarification.
For example, some testers did not fill out a
DR form if a subsystem other than the one
under test failed during the session. For-
tunately, this data could be inferred from the
summary text on the test session report form,
usually in the form’s “Highlights” or “Lost
Time” sections. An example of such an infer-
ence is the determination of the number of
failures during a test session. Since a descrip-
tion read “host crashed and we lost x hours
while the offending subsystem’s develop-
ment team investigated,” but no DR form was
completed since the tester was “not testing the
host,” a failure could be inferred with rea-
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sonable  certainty. Data were not incorporated
into the data set used for this analysis if the
inference was deemed unreliable.

E. 6 Determine Model
Parameters

The AIAA recommended practice identifies
three techniques to determine model parame-
ters: 1) method of moments, 2) least squares,
and 3) maximum likelihood. These are useful
if the practitioner wishes to develop his / her
own tool. However, the document only
supplies the equations necessary to imple-
ment the maximum likelihood technique. To
implement other parameter estimation tech-
niques, the practitioner must consult sources
other than this document.

To save effort on parameter determination a
practitioner can select an automated tool that
provides the models and estimation tech-
niques required by your project. The AIAA
recommended practice lists several available
tools in Appendix B and lists the models each
tool supports.

For project A, the SRE toolkit supplied by
AT&T was used to estimate the parameters
for the Musa Basic Model.

E. 7 Validate the Model

Section 5.7 recommends validating the model
“fit” on the observed data with some level of
confidence using statistical tests such as Chi-
square or Kolmogorov-Smirnov. These tests
are designed to detect fairly gross disagree-
ments between the data and the fitted model.

Project A did not use either technique.
Instead, they performed a visual comparison
of the expected model with the actual data
using the plot shown in Figure E.2.  This
informal heuristic procedure allowed them to
feel comfortable with the model forecasts.

E. 8 Perform Appropriate
Analysis

Section 5.2 provides summaries of several
different analysis procedures supporting
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common engineering activities. Among other
topics the AIAA list includes two areas of
interest to Project A: (1) forecasting the
current reliability, and (2) forecasting the
achievement of attaining  a reliability goal.

Figure E.3 shows the failure rate curves for
each of the failure categories defined by the
test team. Using these curves the current
reliability can be forecast.

Observed and Expected Failures vs Time for Musa
Basic Execution Time Model

Number of
Failures

-/

/ I I I I
I I I I I

Failures
Per

Hour

66

System Active Test Time (Hours)

Figure E.2 Informal Model Validation

5
Month

Figure E.3 Failures per Test Hour by Month
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APPENDIX F

USING RELIABILITY
MODELS FOR DEVELOPING
TEST STRATEGIES

F. 1 Allocating Test Resources

It is important for software organizations to
have a strategy for testing; otherwise, test
costs are likely to get out of control. Without
a strategy, each module you test may be
treated equally with respect to allocation of
resources. You need to treat your modules
unequally! That is, allocate more test time,
effort and funds to the modules which have
the highest predicted number of failures,
F(tl,t2),  during the interval tl,t2,  where tl,t2
could be execution time or labor time (of
testers) for a single module. In the remainder
of this section, “time” means execution time.
Use the convention that you make a pre-
diction of failures at tl for a continuous
interval with end-points tl+l and t2.

The following sections describe how a
reliability model can be used to predict
F(tl,t2).  The test strategy is the following:

Allocate test execution time to your modules
in proportion to F(t 1 ,t2).

Model parameters and predictions are updated
based on observing the actual number of
failures, Xo,tl,  during 0,tl.  This is shown in
Figure F. 1, where you predict F(t1 ,t2),  at tl
during tl,t2, based on the model and Xo,tl.
In this figure, tm is total available test time for
a single module. Note that you could have t2
= tm (i.e., the prediction is made to the end of
the test period).

Based on the updated predictions, you may
want to reallocate your test resources. Of

course, it could be disruptive to your
organization to reallocate too frequently. So,
you could predict and reallocate at major
milestones (i.e., formal review of test
results).

Using the Schneidewind software reliability
model, and the Space Shuttle Primary
Avionics Software Subsystem as an example,
the process of using prediction for allocating
test resources is developed. Two parameters,
01  and p, which will be used in the following
equations, are estimated by applying the
model to.  X~,tl.  Once the parameters have
been established, you can predict various
quantities that will assist you in allocating test
resources, as shown in the following
equations:

l Number of failures during 0,t:

F(t)  = WPNl - expGPt)l CF.11

l Using (F.l) and Figure F.l, you can
predict number of failures during t 1 ,t2:

WW = (or/p>[l  - exp(-Pti)l  - Xo,tl CF.3

l Also, you can predict maximum number
of failures during the life (t = -)  of the
software:

W4  = <alP> (F.3)

l Using (F.3),  you can predict the
maximum remaining number of failures at
t:

R(t) = WP> - xo,t (F.4)

Given n modules, allocate test execution time
periods Ti for each module i according to the
following equation:

--------_-___-------------------------------------
0 tl t 2 tm

K-.+1 F(tl,t2)

Figure F. 1 Reliability prediction time scale
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Tm  = Fi(tl,tzMt2  -tl)

I iFi(tlst2)
(F.5)

i=l

In (F.5),  note that although predictions are
made using (F.2) for a single module, the
total available test execution time (n)(t2  - tl)
is allocated for each module i across n
modules. You use the same interval 0,20  for
each module to estimate a and p and the
same interval 20,30  for each module to make
predictions, but from then on a variable
amount of test time Ti is used depending on
the predictions.

Tables F.l and F.2 summarize the results of
applying the model to the failure data for
three Space Shuttle modules (operational
increments). The modules are executed con-
tinuously, 24 hours per day, day after day.
For illustrative purposes, each period in the
test interval is assumed to be equal to 30
days. After executing the modules during
0,20,  the SMERFS program was applied to
the observed failure data during 0,20  to
obtain estimates of a and p. The total number

Table F. 1 Observed Failures and Model Parameters

P
“I 12 1:9 0.13
p 3. 11 1.76

i 10

Table F.2 Allocation of Test Resources

r
F( )

fail&s

12-95

P(20  30)
fail&s

0.695a *w-w- ---e - 2

Actual .
Modul 2
Pm&d 12.5 1.32 1.5 14.4

ActlIZ’ 4’) A 4 r)rl -t-b 1u 13.u 1.3L L.U L
Modul 3

Predi:ted 10.81 0.73 0.81 8.0
. 1I Actual ]
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of failures observed during 0,20  and the
estimated parameters are shown in Table F.l.

Equations (F.2), (F.3),  (F.4)  and (F-5) were
used to obtain the predictions in Table F.2
during 20,30,  The prediction of F(20,30)  led
to the prediction of T, the allocated number of
test execution time periods. The number of
additional failures that were subsequently
observed, as testing continued during
20,20+T,  i s  s h o w n  a s  X(20,20+T).
Comparing Table F.l with Table F.2, you
will see that there is the possibility of
additional failures occurring in Module 1
(0.95 failures) and Module 2 (0.50 failures),
based on predicted maximum number of
failures F(m).  That is, for these modules,
[X(0,20)  + X(20,2O+T)]  5 F(T). Note that
the actual F(m) would only be known after all
testing is complete and was not known at
2O+T. Thus you need additional procedures
for deciding how long to test to reach a given
number of remaining failures. A variant of
this decision is the stopping rule (when to
stop testing?). This is discussed in the
following section.

WW
failures

0.952
.

T
periods

7.6

X(20  20  T)
failer

0
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F. 2 Making Test Decisions

In addition to allocating test resources, you
can use reliability prediction to estimate the
minimum total test execution time t2 (i.e.,
interval O,t2) necessary to reduce the
predicted maximum number of remaining
failures to R(t2). To do this, subtract
equation (F.  1) from (F.3), set the result equal
to R(t2),  and solve for t2:

t2 = {In  Kor/P)/R(Q)l VP (F.6)

where R(t2) can be established from:

R(Q)  = <PXa(p> (F-7)

where p is the desired fraction (percentage) of
remaining failures at t2. Substituting (F.7)
into (F.6) gives:

t2 = Un  Kl/p)l)/p (F.8)

(F.8) is plotted for Module 1 and Module 2 in
Figure F.2 for various values of p

You can use (F.8) as a rule to determine
when to stop testing a given module.

Using (F.8) and Figure F.2 you can produce
Table F.3 which tells you the following: the
total minimum test execution time t2 from
time 0 to reach essentially 0 remaining
failures (i.e., at p = .OOl (.l%), predicted
remaining failures are .01295  and .01250  for
Module 1 and Module 2, respectively (see
(F.7) and Table F.2)); the additional test
execution time beyond 2O+T  shown in Table
F.2; and the actual amount of test time
required, starting at 0, for the  “last” failure to
occur (this quantity comes from the data and
not from prediction). You don’t know that it
is necessarily the last; you only know that it

56

46

36

26

16
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0 0.02 0.04 0.06 0.08 0.1

Figure F.2 Execution time needed to reach the desired fraction  of remaining failures
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was the “last” after 64 peridds  (1910 days)
and44periods  (1314days)forModule 1 and
Module 2, respectively. So, t.2  = 52.9 and t2
= 49.0 periods would constitute your

stopping rule for Module 1 and Module 2,
respectively. This procedure allows you to
exercise control over software quality.

Table F.3 Test Time Required to Reach “0”  Remaining Failures (p = .OOl)

Module 1
Module 2

t2
peliOdS

52.9
49.0

Additional Test Time Last Failure Found
periods piXiOdS

45.3 64
. 44

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:28:13

Information Handling Services, 1999



AIAA R-OL3  72 m 0675534  OOOl1083 007 -

American Institute of Aeronautics and Astronautics
The Aerospace Center

370 L’Enfant Promenade, SW
Washington, DC 20024-2518

COPYRIGHT 1999 American Institute of Aeronautics and Astronautics
July 15, 1999 13:28:13 Information Handling Services, 1999


